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Abstract—With the development of mobile technology, 

users gradually store financial information and personal 

privacy data on mobile terminals, which makes mobile 

security particularly important. In order to effectively 

improve the detection speed of application privacy leaks, 

this paper proposes a concept of service binding, binding a 

minimum privacy permission set for each service provided 

by the application. Use the service binding concept to make 

the static analysis phase track only the sensitive data flow 

paths between APIs that apply the service's privacy 

permissions. In order to make up for the lack of static 

analysis to predict the behavior of application privacy 

leakage, this paper proposes a static analysis that effectively 

combines machine learning algorithms, abstracts the path 

characteristics of the static data streams obtained from static 

analysis into feature vectors, and further uses machine 

learning algorithms for learning classification. The 

experimental demonstration and performance analysis 

results show that the privacy leak detection mechanism 

based on service binding has faster detection speed and 

higher accuracy than FlowDroid. 

Keywords-privacy leakage, static analysis, service binding, 
machine learning 

1. INTRODUCTION 

In the past 10 years, the expansion of mobile devices in the 

consumer sector and even in the corporate sector has been 

surprisingly rapid and quantitative. As early as 2014, 

ANDREESSEN HOROWITZ analyst Benedict Evans said: 

"Mobile is Eating the World." This has never been an 

exaggeration. The number of mobile devices in the world has 

long surpassed the total population of the world many years 

ago. Since Apple introduced the first iPhone in 2007 to 

revolutionize smartphones for only 16 years, the market size 

of the mobile industry has grown rapidly. According to 

statistics from Statista, the global smartphone shipment in 

2010 was around 0.34 billion units, however, this figure 

climbed to 1.28 billion by the end of 2020, and it is expected 

to reach 1.43 billion by 2023. 

Today, the main mobile operating systems are Android and 

iOS. Android's source code is released by Google under an 

open-source license, which allows developers to develop 

secondary according to their own needs. IOS system has the 

advantages of smooth operation experience, exquisite system 

interface and high security which are incomparable to other 

mobile phone systems. Although these two mobile phone 

operating systems both provide users with a lot of 

applications, the difference between them is that most 

applications of Android are free while that of iOS takes 

charge but has higher security. According to the latest data 

from Statista, the number of applications in the Google Play 

App Store reached 3.482 million, and the number of 

applications in Apple’s App Store was 2.226 million. The 

cumulative number of App downloads in the App Store 

reached 218 billion times. It also shows that mobile users 

usually spend 87% of their time on mobile apps. 

From the perspective of mobile security, mobile platforms 

are more and more likely to be attacked, and the risk is also 

increasing. In addition, Android and IOS have adopted a 

coarse-grained rights management mechanism, that is, the 

user is responsible for the mechanism for applying and 

granting application-level permissions. Due to the lack of 

awareness and professional knowledge about mobile 

platform privacy leakage, the mobile platform has become a 

high-risk area for privacy leakage. Therefore, mobile 

applications need an effective privacy leak detection 

mechanism. 

The existing mobile terminal privacy leak detection 

technologies for application software mainly include 

LeakMiner [1], TrustDroid [2], FlowDroid [3], TaitDroid 

[4], AppFence [5], and Kynoid [6]. They avoid privacy 

leakage of mobile platforms to a certain extent for specific 

application scenarios. Unfortunately, these schemes have 

found the following problems.  

(1) Existing solutions generally detect privacy permissions 

applied during application installation, but services used by 

actual users only involve partial privacy rights. This takes a 

number of unrelated privacy rights into consideration, which 

not only increases the time spent in the evaluation phase but 

also reduces the accuracy of the test results. 

(2) Static analysis only analyzes whether there is a sensitive 

data flow path in the application, while some existing service 

applications require users' private information to provide 

normal services, such as Baidu Map, Meituan Takeaway, 

Taobao, etc. These applications also have sensitive data flow 

paths. Sensitive data streams can usually reflect a user's own 

characteristics and habits, and profiling can be performed 

through sensitive data streams, but it is difficult to effectively 

distinguish whether an application is legitimately using user 

privacy or leaking user privacy by analyzing sensitive data 

streams alone. The dynamic analysis method needs to 
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execute the program and extract the features related to 

malicious code by collecting the runtime information of the 

program. However, this method can only obtain one 

execution track at a time and cannot ensure that all sensitive 

behaviors are included, so it has a high misjudgment rate. 

In order to solve the above problems, we propose the concept 

of service binding, use the FlowDroid analysis tool to detect 

privacy leaks in the application software, and use the random 

forest algorithm for data analysis of the static analysis 

results. Our main contributions are as follows:  

(1) We propose a concept of service binding, which binds a 

minimum privacy permission set for each service provided 

by the application. The minimum privacy permission set 

refers to the privacy permission that the service needs to 

apply for. This algorithm obtains the set of privacy 

permissions that need to be managed according to the 

services that users need to use, which not only reduces the 

number of privacy permissions detections, but also improves 

the detection speed. At the same time, the misjudgment rate 

of privacy leakage behaviors caused by the detection of 

considering redundant privacy permissions is reduced. 

 (2) For static analysis, only the sensitive data flow path in 

the application can be detected. It is difficult to effectively 

determine whether the application has a privacy leak 

behavior. This paper proposes a static analysis that 

effectively combines with machine learning algorithms, 

abstracts the path features of the sensitive data streams into 

feature vectors, and further uses machine learning algorithms 

to learn to classify and improve the accuracy of the detection 

results. 

(3) Based on the concept of service binding, we select 

FlowDroid as a APK static analysis tool, and Random Forest 

Algorithm as a classification algorithm to implement a 

prototype system for privacy leak detection on the Android 

platform. 

2. RELATED WORK 

Current privacy leak detection technologies for mobile 

terminals can be mainly classified into two types: static 

analysis and dynamic analysis. 

Static analysis techniques directly avoid the problem of 

incomplete path coverage caused by dynamic analysis by 

statically scanning the application rather than executing the 

application dynamically. Static analysis can be divided into 

two types: 1. Feature matching of program code. 2. Static 

flow analysis. At present, there are the following studies at 

home and abroad: 

Arzt [3] proposed FlowDroid to perform accurate static 

pollution analysis on Android applications. It takes the 

Android apk file as input for processing and performs static 

pollution analysis, handles callbacks by simulating the 

complete Android life cycle. It is context-sensitive, but also 

stream, field, and object-sensitive. Using the SuSi 

framework [7], Source and Sink of the target Android 

version can be determined. Arzt et al. detect Source, Sink, 

and EntryPoint by parsing the manifest and dalvik 

executables (dex). Then they perform a pollution analysis to 

find the path from Source to Sink and report all discovered 

paths. 

Yue [8] proposed a strategy for replacing reflective call 

statements with non-reflective call statements and 

implemented a DyLoadDroid tool that can effectively 

analyze the dynamic loading and reflection mechanism of 

Android. At the same time, experiments have verified its 

effectiveness in dealing with the taint analysis of Android 

dynamic loading and reflection mechanisms. 

Zhao [9] proposed a new privacy scanning technique to 

solve the problem of matching privacy information with 

behaviors in privacy policy texts and codes. The method 

trains a BiLSTM (Bidirectional Long Short Term Memory) 

model based on the attention mechanism, by which we can 

determine whether the text contains private information or 

not. Then, the statements where the privacy information is 

located are analyzed and the negative and behavioral words 

in the statements are extracted and recorded. 

Wu [10] proposed TraceDroid for detecting Android 

malware, TraceDroid uses a static analysis approach to 

derive the possible execution trajectories of an application 

and identify sensitive information, and also utilizes a 

dynamic analysis approach to gather runtime information to 

discover disguised malware. This hybrid approach achieves 

better performance than purely static or dynamic analysis 

methods. The ability to obtain more network traffic data and 

provide better characterization of network behavior using 

hybrid analysis methods. Finally, the transmission data will 

be used for model training. 

Sentana [11] proposed a static analysis method to analyze 

the permissions, as well as tracking the third-party libraries 

used by each app through decompilation and analyzing the 

impact of third-party libraries on privacy. Subsequently, 

malware was analyzed and some malware was captured. In 

addition, the authors performed network measurements to 

investigate the behavior of the network while the app was 

running. Finally, the authors conducted an app compliance 

and user reviews analysis to analyze privacy policy 

compliance and user reviews of the apps, and used reviews 

as one of the important parameters of security issues and the 

likelihood of user privacy breaches in cryptocurrency wallet 

apps. 

Dynamic analysis refers to analyzing the function of a 

function, clarifying the logic of a code, and excavating 

possible privacy leaks by observing the state of a program 

during its execution, such as register contents, function 

execution results, memory usage, and so on. The most 

famous of these is the TaintDroid framework [4] for the 

Android platform. The modified Android virtual machine 

taints and tracks sensitive data. It can track multiple Sources 

and Sinks simultaneously. When sensitive information 

leaves the system, the running mobile phone user will be 

informed. The detection system based on this framework 

has AppFence [5]. Cui [12] proposed a network traffic 

analysis framework for detecting privacy leaks in Android 
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Apps, which utilizes dynamic hooking techniques to add 

additional code to functions responsible for executing 

HTTP(S) requests, and then saves unencrypted data and 

corresponding code execution traces. In order to study 

privacy leakage between host apps and third-party libraries 

with fine-grained accountability, the authors also propose an 

unsupervised approach that identifies third-party libraries by 

correlating requests and code execution traces, and uses this 

approach to differentiate traffic between host apps and third-

party libraries. Schindler [13] proposes a method for 

identifying privacy leaks in third-party Android libraries 

that combines dynamic and static analysis methods, using 

the FlowDroid static analysis method and the Frida dynamic 

analysis method, and finally adding mitm-proxy to detect 

suspicious data sinks. Hao [14] presents a new clustering-

based approach to detect third-party libraries in Android 

applications and perform privacy leakage analysis on third-

party libraries. The approach uses fuzzy matching to cluster 

feature vectors into different clusters and uses cluster 

prediction to detect third party libraries and also uses 

dynamic instrumentation to monitor sensitive APIs and 

perform privacy breach analysis. 

3. PRIVACY LEAK DETECTION MECHANISM BASED ON 

SERVICE BINDING 

3.1. Related definitions 

Definition 1: Application. Apps App installed on phones and 

tablets. 

Definition 2: Benign application. There is no privacy 

disclosure in the program. 

Definition 3: Malignant applications. There is a privacy 

breach in the program. 

Definition 4: Application Services. Some functional services 

are provided by the application, such as shopping, video, 

reading, etc. 

Definition 5: Privacy Rights. Permissions involving mobile 

terminal user's privacy data. It can be divided into two 

categories. One is the Source privacy right. Some APIs it 

manages can read the local privacy data of the mobile phone. 

The other is Sink privacy, which manages some APIs that 

can transfer data to external systems. For example: Internet, 

SMS, etc. 

Definition 6: Set of minimum privacy permissions. The 

application service requires normal application privacy 

permissions. 

Definition 7: Service Binding. The application service 

corresponds to a set of minimum privacy rights, and the 

security of the application service determines the security of 

the set of corresponding minimum privacy rights. 

Definition 8: Sensitive data flow path. Refers to the path of 

sensitive data between APIs from Source permissions to 

APIs related to Sink permissions, in the form of 

APISource APISink . 

Definition 9: The characteristic abstraction of all sensitive 

data flow paths of an application service can be defined as 

S={r1,r2,r3,…,rn,c}, where ri represents a sensitive data flow 

path and subscript n represents the total number of sensitive 

data flow paths. c  indicates the nature of the application, 

such as benign or malignant.  

3.2. System Model 

Since dynamic analysis requires the execution of a program, 

this will bring a certain load to the mobile terminal. In 

addition, dynamic analysis does not ensure coverage of the 

data flow path and has a high misjudgment. Therefore, 

dynamic analysis is rarely used alone. Compared to dynamic 

analysis, static analysis does not require the installation and 

execution of applications. It only requires static scanning of 

the application execution code. At the same time, static 

analysis can effectively solve the problem of incomplete data 

path coverage. Therefore, most academic studies use static 

analysis to detect whether an application has a privacy 

breach. For the static analysis, it is impossible to judge 

whether there is a privacy leakage problem according to the 

path of the sensitive data flow. In addition, when the existing 

solution detects the application privacy leak, it generally 

detects the privacy permission applied during application 

installation, but the actual application service used by the 

user only involves some privacy rights. Based on this, we 

propose an application service privacy leak detection 

framework. This solution combines the machine learning 

algorithm with the sensitive data flow path of the detection 

application for further analysis, and only detects the privacy 

permissions of the application service binding, which can 

improve the speed of application privacy detection. 

As shown in Figure 1, there is a combination of static 

analysis and detection record acquisition in the horizontal 

direction. The static analysis is responsible for privacy leak 

detection of the application, and the detection record 

acquisition is to avoid duplicate detection of the same 

application service. Therefore, in this solution, a unique 

identifier (signature_package name_version number) is 

created for each application, and the detection result of each 

application service is timely uploaded to the database server. 

When the next scheme accepts a detection task, it first 

determines whether the application service of the application 

to be detected has a detection result in the database. If a 

detection result already exists in the database, the detection 

result is obtained and the final detection result of the privacy 

permission preset rule is given in combination with the 

permission setting. If the database does not exist, privacy 

leak detection is performed on the execution code of the 

application service according to the normal flow. The 

structure of the application service detection record table 

stored in the database is shown in Table 1. The detection 

identification attribute is whether the application has been 

detected, 1 for yes, and 0 for no. Secure application services 

refer to application services that do not leak privacy. 
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Figure 1. The overall framework of the program. 

In the vertical direction, privacy leak detection is divided 
into multiple layers such as service binding, event 
acquisition, feature vector, quantization detection, and 
permission setting, which not only guarantees the detection 
mechanism performance, but also satisfies the personalized 
settings of different users' privacy rights. 
The service binding refers to the minimum privacy 
permission set that needs to be applied for the service type 
binding in advance and determines whether the privacy 
permission set bound by the application service is secure by  
detecting the application service. A service is a function 
provided by an application, for example: video, shopping, 
music and reading. The minimum privacy permission set is 
the privacy permission that needs to be applied for the 
normal operation of the storage service. Privacy rights refer 
to some access control policies that manage user-sensitive 
data. There are generally read address books, read user 
accounts, and read calendars. 
Event acquisition refers to obtaining the application service’s 
sensitive data flow path through static analysis, mainly 
through the smut analysis to track the flow of sensitive data 
in the application and record the path of sensitive data flow 
between functions. Static analysis is to statically scan the 
application instead of dynamically executing the application. 
Therefore, the path coverage insufficiency caused by 
dynamic analysis is directly avoided. Therefore, we can 
statically analyze the application offline to identify the 
application potential in privacy leaked in advance. So, we 
choose to use static analysis to detect the application's 
privacy leak behavior. 

The eigenvectors refer to the quantification of the sensitive 

data flow path into feature vectors. Because it is impossible 

to determine whether there is a privacy leak behavior based 

on whether there is a sensitive data flow path. Therefore, we 

quantify the path of the sensitive flow from the static 

analysis and continue to use the machine learning algorithm 

for quantitative detection. We consider the application 

privacy leak detection as a classification problem and count 

the sensitive data flow paths of all malicious applications and 

benign applications. Then we analyze the characteristics of 

benign applications and malicious applications with different 

sensitive data flow paths, select applications with statistical 

differences, and construct a feature sample matrix through 

the characteristics. The quantification definition of the 

feature sample matrix is shown in Table 2. 

 

Table 1. Application Service Test Record 

Application ID Detection ID Security Application Service 
Zelyy_com.zelyy.f

inance_1.6.0 
1 [Financial management] 

Bolton_com.fanli.
Android.apps_6.5.

0 

1 [shopping] 

     …   …            … 

 

Table 2. Feature sample matrix 
          feature    
app name APISOURCR-->APISINK … Application 

properties 
app1 1 … GOOD 

app2 1 … BAD 

app3 0 … GOOD 

… … … … 

 

As shown in Table 2, the columns of the feature matrix 

contain sensitive data flow paths and application properties 

owned by malicious applications and benign applications to 

mark whether the application is benign or malignant. If the 

detected application has a sensitive data flow path listed, it is 

set to 1, otherwise, it is set to 0. If the application has a 

privacy breach, then its application is BAD. Otherwise, it is 

GOOD. The permission setting is to meet the different 

privacy requirements of the user. This solution provides the 

user with the opening rules for autonomously presetting 13 

privacy rights. When the solution completes the detection of 

the leakage of the application service privacy, it will further 

obtain the opening rules of the permission setting and the 

privacy permission preset. Finally, it gives a scientific 

suggestion to the user to assign the privacy permission to use 

the application service binding. 

3.3. Workflow 

The process of testing the application by the solution is as 

follows: 

(1) It is reasonable to obtain the type of service to be tested 

and the type of service to be verified. The type of application 

service detected by the solution is the application service that 

the user needs to use. The solution default user knows what 

services the application can provide. In order to improve the 

stability of the solution, after the user chooses to use the 

application service, we will verify whether this application 

has this application service. If it is owned, the solution will 

be executed normally. Otherwise, the plan prompts the user 

to continue choosing the type of service to use. The method 
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of application service verification is to decompile the 

application permission application file and acquire the 

permission set of the application. If the application request 

permission set contains the minimum permission set 

corresponding to the application service selected by the user. 

Then, the user-selected application service is reasonable, and 

vice versa, it is unreasonable. 

(2) Acquire the application’s unique identifier 

(signature_package name_version number) and use the 

unique identifier and application service to query the history 

detection result from the database. If there is, then the 

opening rule of the detection result combined with the 

permission setting gives a scientific suggestion for the 

problem of giving the user privacy permission. The 

implementation of the program ends, if there is no detection 

result in the database, in execution (3). 

(3) Get the minimum set of privacy permissions that need to 

be detected according to the application service. Use static 

analysis to get the path of sensitive data flow between 

privacy-priority APIs. 

(4) The path of the sensitive data stream is quantized into 

feature vectors according to the feature vector definition. 

(5) Construct a feature sample matrix based on benign 

sample application and malignant sample application. 

(6) Using machine learning algorithms to learn and classify 

the applied feature vectors. The classification result refers to 

whether the application is benign or malignant. Malignancy 

refers to applications that have privacy breaches. On the 

contrary, it refers to application security. 

(7) In combination with the detection result, the permission 

setting sets a preset opening rule for the privacy permission. 

Finally, it gives reasonable suggestions for the application of 

privacy rights for application services used by users. 

4. SYSTEM IMPLEMENTATION 

4.1. System Modules 

This system is mainly aimed at privacy leak detection of 

Android platform applications. System execution collects the 

minimum set of privacy permissions required for the normal 

operation of various types of application services. We refer 

to the Google Play, Application treasure, and SnapPea 

classification of the application. We use Android 

applications in accordance with the services provided by the 

classification. A total of 16 service types are listed in Table 

3. We downloaded 20 of the most downloaded applications 

for each service type. The AndroidManifest.xml of all 

applications is decompiled by the APK tool to obtain the 

permission of the application, and the intersection of all 

application permission sets under a single service type is 

collected as the minimum privacy permission set and saved 

locally. Our comprehensive privacy data aggregates thirteen 

important privacy privileges for the importance of users. 13 

privacy privileges include: reading address books, reading 

user accounts, reading calendars, reading obscure addresses,  
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Figure 2. System implementation architecture 

 

Table 3. 13 privacy rights 

Authority API 

Reading address book Android.permission.READ_CONTACTS 

Reading user accounts Android.permission.GET_ACCOUNTS 

Reading the calendar Android.permission.READ_CALENDAR 

Read fuzzy address Android.permission-group.LOCATION 

Read the exact address 
Android.permission.ACCESS_FINE_LOC

ATION 

camera Android.permission.CAMERA 

recording Android.permission.RECORD_AUDIO 

Read phone status 
Android.permission.READ_PHONE_STA

TE 

Reading call records Android.permission.READ_CALL_LOG 

Reading SMS Android.permission.READ_SMS 

The internet Android.permission.INTERNET 

Read log Android.permission.READ_LOGS 

Read Browser History 

Access 

com.Android.browser.permission.READ_

HISTORY_BOOKMARKS 

 

reading exact addresses, cameras, recording, reading phone 

status, reading call logs, reading logs, reading browser 

history visits, reading text messages, networking. The system 

implementation architecture is shown in Figure 2, and the 

binding relationship between application services and 

minimum privacy permissions is shown in Table 3. The 

system function module is introduced as follows: 

(1) Service Rights Mapping Module 

According to the input of the service type, when the user or 

the detected Android application applies for permission, the 

module obtains the minimum privacy permission set of the 

corresponding service from the local file according to the 

service type. The mapping relationship between the 

application service and the minimum privacy permission set 

is shown in Table 4. In order to ensure no duplicate 
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detection, the module will record the privacy leak detection 

result of each Android application service to the database 

server. Each Android application has its own unique 

identifier (signature_package name_version number), and we 

will uniquely identify the application in the database to find 

out whether the application service that has been detected by 

the  

Android application has already recorded the detection 

result. If the historical detection result of the application 

service is found, the detection result read from the database 

can be directly submitted to the privacy personality setting 

module. 

(2) Sensitive data stream acquisition module 

This module is responsible for obtaining the minimum 

privacy permission set that the application has assigned to 

the normal operation of the privacy right and the to-be-

detected service, obtaining the corresponding API function 

according to the privacy right, and then analyzing whether 

there is sensitive data flow path between these APIs through 

the taint. This module mainly quotes FlowDroid [15] for 

static analysis of applications. The FlowDroid open source 

project includes five subprojects: soot, heros, jasmin, soot-

infoflow, soot-infoflow, and soot-infoflow-Android. Their 

dependencies are shown in Figure 3.3. FlowDroid stores an 

important SourcesAndSinks.txt file locally. This file is pre-

defined by SUSI's Android system. Source and Sink APIs 

are prone to privacy leaks. There are 91 and 125 respectively. 

FlowDroid's sensitive data flow path analysis process is as 

follows: 

a) FlowDroid collects source points, sink points, entrypoints, 

and callbacks before performing dataflow analysis. 

b) FlowDroid will decompile and parse the APK's 

Manifest.xml file, generate the variable processMan, get its 

packagename and assign it to 

this.appPackageName="package name", get the entry point 

of its program. The entry point of the Android application is 

the four major components (Activity, Broadcast, Provider, 

Service) as defined. 

c) The program calls initializeSoot(true) to decompile 

classes.dex to generate the stable file. Then, it calls the 

dummyMainMethod method body function to collect the 

callback function. 

d) The program calls 

calculateSourcesSinksEntrypoints("SourceAndSink.txt") to 

collect the source and sink points. 

e) The flow of FlowDroid has been improved here. We 

obtained the minimum set of privacy permissions for 

applications that have been granted privacy permissions and 

service requests that need to be detected. At the same time, 

the APIs recorded in SourceAndSink.txt are filtered to retain 

only the APIs related to the normal operation of the service 

to be detected. 

f) After the preparation work is done, the program calls the 

runInfoflow() function to construct the data flow diagram 

(ICFG diagram), and analyzes whether there is a data flow 

path between each Source and Sink according to the ICFG 

diagram and saves the result in InfoflowResults. 

Table 4. Service Privacy Rights Mapping Table 
Application 

service Minimum privacy set 

navigation { Read precise location, network } 

news 
{ Read precise location, account, network, 

camera, recording, read phone status } 

Financial 

management 
{ Network, read phone status } 

Social 
{ Read precise location, network, camera, 

recording, read phone status } 

video { Network, camera, read phone status } 

shopping 
{ Read precise location, network, camera, 

recording, read phone status } 

communication { Network, camera, read phone status } 

Office 
{ Read address book, network, read phone 

status } 

Safety { Network, camera, read phone status } 

tool 
{ Read precise location, network, camera, read 

phone status } 

photography 
{ Read precise location, network, camera, 

recording, read phone status } 

life 
{ Reading logs, network, camera, reading exact 

location, reading phone status } 

system { network } 

beautify 
{ Reading logs, network, camera, read phone 

status } 

music 
{ Reading logs, network, camera, reading precise 

location, recording, reading phone status } 

read none 

 

Soot

Jasmin

Heros

Soot-Infolow

Soot-Infolow-Android
 

Figure 4. Dependencies between FlowDroid subprojects 

 

(3) Service Security Detection Module 

The sensitive data stream path obtained by the sensitive data 

stream acquisition module is constructed according to the 

abstract definition of the application service feature, and then 

the locally constructed feature sample matrix is called. This 

module refers to the random forest algorithm [16] to perform 

the feature vector of the application service, and then 

analyzes it to achieve application type classification. 

The base classifier of the random forest is a decision tree. 

The bootstrap method is used to obtain the training set for 

constructing each decision tree from the training samples, the 

decision tree is constructed in a binary recursive manner, and 

the constructed decision tree is constructed into a forest. 

When it is necessary to classify the test samples, the samples 
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are passed to each tree in the forest. Each tree gives a 

classification result, and the most popular class among all 

trees in the forest is selected as the final decision. 

Given a training data set D with M features, the process of 

the random forest algorithm can be described as follows: 

a) Using the bootstrap method to generate K training subsets 

of the same size as the original sample set. The essence of 

the bootstrap method is a self-help method, a non-parametric 

statistical method: N times of random and repeatable 

sampling of the observed information (in this case, the 

original sample) to obtain the training for constructing each 

decision tree set. Bootstrap makes full use of given 

observation information and does not require models, other 

assumptions, or adds new observations. It has the 

characteristics of stability and high efficiency. 

b) For each data set, a decision tree is constructed using a 

binary recursive approach. At each node of the decision tree, 

one feature subspace is randomly sampled from all features, 

and all possible splitting methods are calculated based on 

this feature. We use the best splitting method for nodes (for 

example, the maximum Gini metric). Then the nodes will 

continue to split until the tree reaches the preset stop 

condition. In this paper, the default stop condition is that the 

depth of the decision tree reaches the set value. 

c) Then we combine unpruned trees, integrate a random 

forest, and use tree-to-tree voting as a sorting decision for 

random forests. When the sample to be classified is input, the 

classification result of the random forest output is determined 

by the simple majority vote of the output result of each 

decision tree. 

(4) Privacy Personality Settings Module 

Users can set up rules for privacy permissions in advance to 

meet the actual different privacy requirements of users. 

Users can turn on rule settings for a certain privacy 

permission. For example, set open conditions and open 

times. When the detection result of the service risk detection 

module is safe, the scheme will then check whether the 

privacy permission opening rule is set in the permission 

setting module. If the user sets the privacy permission in 

advance, then the rule is executed according to the setting 

rule. If no privacy permission setting rules are enabled, the 

solution will display the detection results on the system 

interface immediately, including whether the service is 

secure and which privacy rights can be assigned. 

4.2. System Operation Process 

System workflow chart shown in Figure 4, the specific steps 

are as follows: 

Step 1: Decompile Manifest.xml to obtain Application 

Permission Set (APS). 

Step 2: Get APK Unique ID (signature_package 

name_version number). 

Step 3: Get the application service type from user feedback. 

Obtain the corresponding service security privacy 

permissions (SSPP) from the local file. 

Step 4: Verify that the user feeds back the validity of the 

application service, and determine whether the application 

permission set includes the minimum privacy permission set 

bound by the application service. If included, go to step 5. 

Otherwise, the user is prompted to re-select the application 

service. 

 

 
Figure 4. System work flow chart 

 

Step 5: Obtain the security service set (SSS) and the 

evaluation mark (EM) of the application from the database 

according to the APK unique identifier. The SSS is used to 

save the application detection security service set. The EM 

is used to mark whether the application has been detected. If 

EM=1 and SSS are empty, indicating that the application 

has been detected and the security service is empty, then this 

application is not recommended for installation. If EM=1, 

SSS is not empty, it is judged whether the current service is 

in the collection. If yes, it is directly given to the privacy 

personality setting module, and the processing is performed 

according to the user's pre-set permission. If it does not 

exist, go to step 6. The application service test record table 

in the database is shown in Table 1. 

Step 6: Remove the SSPP from the privacy permission 

granted by the application, and filter out the privacy 

permission that needs to be detected. 

Step 7: Enter the sensitive data stream acquisition module, 

and use FlowDroid to trace the sensitive data flow path 

between the APIs related to privacy permissions. 

Step 8: The path of the sensitive data flow obtained in the 

above step is converted into a feature vector by using the 

definition of the applied feature vector. This feature vector 
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can be used as a test set of random forest classification 

algorithms. 

Step 9: Invoke the saved feature sample matrix file locally 

as a training set of the random forest classification 

algorithm. By analyzing the characteristics of benign 

applications and malicious applications that have 

differences in the path of sensitive data flows, those feature-

construction feature sample matrices with statistical 

differences are selected. 

Step 10: Use a random forest algorithm to analyze whether 

this application is secure, and at the same time decide 

whether the privacy of the application service binding is 

safe. If the result of this service test is safe, then this service 

is added to the SSS of this application in the database as a 

cache for the next test. If this service test result is unsafe, 

the feedback to the user that the user's selected application 

service is insecure and suggests rejecting the assignment of 

relevant privacy rights. 

Step 11: The permission privacy right is combined with the 

preset opening rules of the 13 privacy rights by the privacy 

personality setting module and displayed on the system 

interface in time to provide the user with feedback on the 

security of the service and the privacy rights of the service 

application. 

4.3. System Interface 

A privacy violation detection system based on service 

binding includes: 

(1) Application Service Evaluation 

The main function is to perform privacy leak detection on 

application services. The execution process is: 

a) Select the application to be detected APK 

b) Select the application service to use 

c) Click Start Evaluation. The evaluation result will show the 

detection results, including the security status of the 

application service security and the corresponding service 

privacy permission. 

(2) Personality settings 

The main function is to preset 13 privacy permission opening 

rules to satisfy the user's individual needs, including settings 

for privacy permission opening conditions and opening 

times. When the user sets the permission opening rule, you 

can click OK to complete the setting work. 

5. EXPERIMENTAL VERIFICATION 

5.1. Experimental Index 

The system uses FlowDroid's excellent Android application 

static analysis open source project to construct the tested 

feature vectors based on the static analysis results of 

FlowDroid, and then uses the random forest classification 

algorithm to classify Android applications. This experiment 

mainly verifies the following two aspects of performance 

indicators: 

(1) The accuracy of privacy leak detection results, recall rate, 

and F-measure. 

The three evaluation indexes used in the experiment [20] 

were used to test the effect of this experiment. According to 

the actual situation of the application, the results of the 

experiment will result in four situations as follows. 

a) True Positive, a benign application is judged to be a 

benign application. This type of application is denoted as 

TP(M). M  is the application feature vector entered during 

analysis. 

b) True Negative, the malicious application is judged to be a 

malicious application, and this type of application was 

recorded as TN(M). 

c) False Positive, a malicious application is judged to be a 

benign application, and this type of application was recorded 

as FP(M). 

d) False Negative, a benign application is judged to be a 

malicious application, and the application was noted as 

FN(M). 

The formula for calculating the accuracy A is 

A=
TP M + TN M

TP M + TN M + FP M + FN M
(1) 

The formulas for measuring the accuracy PB and recall rate 

RB of benign applications are 

PB=
TP M

TP M + FP M
(2) 

RB=
TP M

TP M + FN M
(3) 

The formulas for detecting the malicious application's 

accuracy PM and recall rate RM are 

PM=
TN M

TN M + FN M
(4) 

RM=
TN M

TN M + FP M
(5) 

TP M , TN M , FP M , and FN M  respectively 

indicate the number of applications within the determination 

result. 

The formulas for calculating the F-measure are 

FB=
2PBRB

PB+RB
(6) 

FM=
2PMRM

PM+RM
(7) 

(2) Privacy leak detection time 

We mainly examine the comparison between PDDMSB 

privacy leak detection mechanism and FlowDroid's mobile 

application privacy leak detection time consumption 

proposed in this chapter. 

5.2. Data Set 

We download a total of 5,000 malicious applications from 

VirusShare and Contagio's official website. Since many of 

the sample apps are just different versions of the same app,  

Table 5. Dataset Application Source And Size Composition 

size 
(MB) 

Malignant applications 
size 

(MB) 

Malignant applications 
Virus

Share 
Cont

agio total VirusS

hare 
Cont

agio total 

0~5 112 44 156 0~5 112 44 156 
5~10 108 49 157 5~10 108 49 157 
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total 220 93 313 total 220 93 313 

 

Table 6. Sample Application Collection 
name App 

properties 
App 

service 
Application introduction 

mushroom 

Street 

benign Shopping Mushroom Street, an e-

commerce website focused on 
fashion women consumers, 

provides girls with products 

suitable for young women in 
the fields of clothing, shoes, 

bags, accessories, and beauty 

makeup. 

Android 

Wallpaper 

benign beautify Focus on millions of HD 

wallpapers for the Android 

platform. 

Micro-
lock 

screen 

Malignant beautify A mobile phone lock screen 
APP. 

Book 
artifact 

Malignant read A newest, fastest, and most 
comprehensive novel guide 

reading assistant, covering 

the hottest series of novels on 
major websites, is a must-

read app for reading. 

... … … … 

there are many malicious apps whose APKs have been 

damaged, We filter and replace a total of 3000 malicious 

application APKs. And 456 benign application APKs are 

downloaded from Google Play and App. The FlowDroid 

project is a static analysis tool and his analysis ability is good 

enough. However, it can only be considered a laboratory 

product, FlowDroid is very sensitive to the size of the 

application of the analysis of the APK. When the APK file to 

be detected is only a few megabytes, FlowDroid can quickly 

analyze the sensitive data flow path. When the APK file to 

be detected is large, it needs to take up a lot of memory and 

take a long time. This is the reason why FlowDroid can't be 

used in the market. Therefore, due to the limited 

performance of the experimental machine, the experiment 

finally selected the APK file below 10M as the analysis 

object. 

The data set for this experiment finally contained 769 

Android applications that existed in the real world, of which 

313 malicious applications came from the datasets 

VirusShare and Contagio. There are 456 benign applications 

from Google Play, App Store and other app stores. Table 5 

shows the source and size of the entire data set. Table 6 

shows the sample application set. 

5.3. Experimental Results and Performance Analysis 

Experiment 1: Comparing privacy leak detection results with 

PDDMSB and FlowDroid accuracy, recall rate, F-measure 

Since FlowDroid has a long time to analyze static flow, we 

did not perform service inspection on all application APKs. 

We have chosen to verify the validity of the test results from 

different service type dimensions. We selected a total of 160 

sample APKs from 769 sample APKs, of which 5 benign 

APKs and 5 malignant APKs were selected for each service 

type. A total of 16 service types are shown in Table 3. We 

have done 16 experiments in total according to the number 

of service types. Each set of experiments verifies the 

accuracy of current service test results, recall rate, and F-

measure. A total of 10 APKs for each group were tested 

using the PDDMSB's prototype system. Record the results of 

each APK test by group TP M , TN M , FP M , and 

FN M . Finally, the accuracy rate, recall rate, and F-

measure of each group were calculated. In addition, we used 

16 sample APKs only for static analysis using FlowDroid, 

recorded the data and compared the detection accuracy of the 

two detection mechanisms: recall rate and F-measure. The 

comparison experiment results are shown in the Fig. 5~Fig.8. 

According to the above experimental results, the accuracy 

rate of the system detection results based on the service 

binding-based privacy detection mechanism is close to 94%, 

and the accuracy of the system detection results achieved 

using FlowDroid as the static analysis is close to 89%.  

 

 

  

 
Figure 5. Plan detection accuracy 
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Figure 6. The program detects the accuracy of benign APKs and malicious APK 

 
Figure 7. The program detects recalls of benign APKs and malicious APKs 

 
Figure 8. Protesting F-measure against benign APK vs. malicious APK 

 

We can conclude that the solution-based privacy leak 

detection mechanism proposed by this scheme significantly 

improves the accuracy of experimental test results. 

Analyzing the reason shows that FlowDroid will mark an 

application with a privacy leak path as a malicious 

application. Therefore, the probability of misinterpreting a 

benign application as a malicious application increases, 

leading to a decrease in the overall accuracy of the detection 

result and a decrease in the benign application recall rate. 

Therefore, the accuracy rate of the test results of this 

program is higher than that of FlowDroid test results. 

Experiment 2: Compare privacy leak detection time with 

PDDMSB and FlowDroid 

Also, since FlowDroid takes a long time to analyze the static 

flow of the application, we do not perform service inspection 

on all application APKs. In this experiment, 10% of APK 

applications were randomly selected from the total sample 

set, for a total of 77 applications. There were 46 benign 

applications and 31 malignant applications. A total of two 

sets of experiments were performed. FlowDroid was also 

used for static flow analysis, but one set was based on 

application granularity and the other set was based on 

service granularity. The experimental data was grouped by 
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application size and the average detection consumption time 

for each group was calculated. The experimental results are 

shown in Figure 9. 

From the experimental results, when the application size is 

0~4M, the detection consumption time based on the 

application granularity is the same as the detection 

consumption time based on the service. However, as 

application size increases, service-based detection consumes 

significantly less time. Since the privacy leak detection 

mechanism based on the service granularity starts to detect, 

some APIs corresponding to the privacy rights that are not 

related to the application service are filtered out, which 

effectively reduces the privacy permission API that the 

FlowDroid needs the taint analysis. Therefore, the 

experimental results are in line with the expectation.

 
Figure 9. Two detection mechanisms detect elapsed time 

6. CONCLUSION 

The main work of this paper is to propose a risk 
detection solution based on service binding for Android 
application privacy right management. Service binding 
refers to the granulation of traditional assessment objects 
based on the application level into service-based. This 
project completes the classification of Android applications 
by services, and statistically obtains the minimum privacy 
set required for the normal execution of each service type 
application. At the same time, it completes the secondary 
development of the granular analysis of the FlowDroid tool 
and completes the numerical conversion of the sensitive data 
flow path of the Android application into a feature vector. 
Finally, through experimental verification, the accuracy, 
recall, and F-measure of PDDMSB and FlowDroid privacy 
leak detection results were compared. Besides, the 
experiment verifies that this scheme can effectively reduce 
the detection time. In the subsequent work, we will consider 
how to replace random forests with neural networks (e.g., 
deep neural networks) in the service security assessment 
module, and utilize deep learning methods to achieve the  
classification of feature vectors of Android applications. 
Subsequently, we will develop a unified application solution 
for different Android versions because the API functions 
corresponding to the privacy permissions of different 
Android versions will change, resulting in the invalidation of 

the statistical sources and sinks in the SourcesToSinks.txt 
file. For different operating systems, e.g., iOS and Windows, 
we will explore the way applications set privacy permissions 
and use private data, and apply the method proposed in this 
paper to these operating systems to realize privacy 
permission management. 
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