
A Privacy Leak Detection Mechanism based on Service Binding

Boyang Wang1, Jinling He2, Yuanhan Du2, Ming Tang2, and Xiaolong Xu3,*
1Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing, China

2State Grid Jiangsu Electric Power Company Limited, Nanjing, China
3School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

[2022040504, xuxl]@njupt.edu.cn; jinling.he@foxmail.com; duyuanhan@126.com; tangming930702@163.com

*corresponding author

Abstract—With the development of mobile technology,

users gradually store financial information and personal

privacy data on mobile terminals, which makes mobile

security particularly important. In order to effectively

improve the detection speed of application privacy leaks,

this paper proposes a concept of service binding, binding a

minimum privacy permission set for each service provided

by the application. Use the service binding concept to make

the static analysis phase track only the sensitive data flow

paths between APIs that apply the service's privacy

permissions. In order to make up for the lack of static

analysis to predict the behavior of application privacy

leakage, this paper proposes a static analysis that effectively

combines machine learning algorithms, abstracts the path

characteristics of the static data streams obtained from static

analysis into feature vectors, and further uses machine

learning algorithms for learning classification. The

experimental demonstration and performance analysis

results show that the privacy leak detection mechanism

based on service binding has faster detection speed and

higher accuracy than FlowDroid.

Keywords-privacy leakage, static analysis, service binding,
machine learning

1. INTRODUCTION

In the past 10 years, the expansion of mobile devices in the

consumer sector and even in the corporate sector has been

surprisingly rapid and quantitative. As early as 2014,

ANDREESSEN HOROWITZ analyst Benedict Evans said:

"Mobile is Eating the World." This has never been an

exaggeration. The number of mobile devices in the world has

long surpassed the total population of the world many years

ago. Since Apple introduced the first iPhone in 2007 to

revolutionize smartphones for only 16 years, the market size

of the mobile industry has grown rapidly. According to

statistics from Statista, the global smartphone shipment in

2010 was around 0.34 billion units, however, this figure

climbed to 1.28 billion by the end of 2020, and it is expected

to reach 1.43 billion by 2023.

Today, the main mobile operating systems are Android and

iOS. Android's source code is released by Google under an

open-source license, which allows developers to develop

secondary according to their own needs. IOS system has the

advantages of smooth operation experience, exquisite system

interface and high security which are incomparable to other

mobile phone systems. Although these two mobile phone

operating systems both provide users with a lot of

applications, the difference between them is that most

applications of Android are free while that of iOS takes

charge but has higher security. According to the latest data

from Statista, the number of applications in the Google Play

App Store reached 3.482 million, and the number of

applications in Apple’s App Store was 2.226 million. The

cumulative number of App downloads in the App Store

reached 218 billion times. It also shows that mobile users

usually spend 87% of their time on mobile apps.

From the perspective of mobile security, mobile platforms

are more and more likely to be attacked, and the risk is also

increasing. In addition, Android and IOS have adopted a

coarse-grained rights management mechanism, that is, the

user is responsible for the mechanism for applying and

granting application-level permissions. Due to the lack of

awareness and professional knowledge about mobile

platform privacy leakage, the mobile platform has become a

high-risk area for privacy leakage. Therefore, mobile

applications need an effective privacy leak detection

mechanism.

The existing mobile terminal privacy leak detection

technologies for application software mainly include

LeakMiner [1], TrustDroid [2], FlowDroid [3], TaitDroid

[4], AppFence [5], and Kynoid [6]. They avoid privacy

leakage of mobile platforms to a certain extent for specific

application scenarios. Unfortunately, these schemes have

found the following problems.

(1) Existing solutions generally detect privacy permissions

applied during application installation, but services used by

actual users only involve partial privacy rights. This takes a

number of unrelated privacy rights into consideration, which

not only increases the time spent in the evaluation phase but

also reduces the accuracy of the test results.

(2) Static analysis only analyzes whether there is a sensitive

data flow path in the application, while some existing service

applications require users' private information to provide

normal services, such as Baidu Map, Meituan Takeaway,

Taobao, etc. These applications also have sensitive data flow

paths. Sensitive data streams can usually reflect a user's own

characteristics and habits, and profiling can be performed

through sensitive data streams, but it is difficult to effectively

distinguish whether an application is legitimately using user

privacy or leaking user privacy by analyzing sensitive data

streams alone. The dynamic analysis method needs to

92

2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR)

2835-2823/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSSR61934.2024.00018

execute the program and extract the features related to

malicious code by collecting the runtime information of the

program. However, this method can only obtain one

execution track at a time and cannot ensure that all sensitive

behaviors are included, so it has a high misjudgment rate.

In order to solve the above problems, we propose the concept

of service binding, use the FlowDroid analysis tool to detect

privacy leaks in the application software, and use the random

forest algorithm for data analysis of the static analysis

results. Our main contributions are as follows:

(1) We propose a concept of service binding, which binds a

minimum privacy permission set for each service provided

by the application. The minimum privacy permission set

refers to the privacy permission that the service needs to

apply for. This algorithm obtains the set of privacy

permissions that need to be managed according to the

services that users need to use, which not only reduces the

number of privacy permissions detections, but also improves

the detection speed. At the same time, the misjudgment rate

of privacy leakage behaviors caused by the detection of

considering redundant privacy permissions is reduced.

 (2) For static analysis, only the sensitive data flow path in

the application can be detected. It is difficult to effectively

determine whether the application has a privacy leak

behavior. This paper proposes a static analysis that

effectively combines with machine learning algorithms,

abstracts the path features of the sensitive data streams into

feature vectors, and further uses machine learning algorithms

to learn to classify and improve the accuracy of the detection

results.

(3) Based on the concept of service binding, we select

FlowDroid as a APK static analysis tool, and Random Forest

Algorithm as a classification algorithm to implement a

prototype system for privacy leak detection on the Android

platform.

2. RELATED WORK

Current privacy leak detection technologies for mobile

terminals can be mainly classified into two types: static

analysis and dynamic analysis.

Static analysis techniques directly avoid the problem of

incomplete path coverage caused by dynamic analysis by

statically scanning the application rather than executing the

application dynamically. Static analysis can be divided into

two types: 1. Feature matching of program code. 2. Static

flow analysis. At present, there are the following studies at

home and abroad:

Arzt [3] proposed FlowDroid to perform accurate static

pollution analysis on Android applications. It takes the

Android apk file as input for processing and performs static

pollution analysis, handles callbacks by simulating the

complete Android life cycle. It is context-sensitive, but also

stream, field, and object-sensitive. Using the SuSi

framework [7], Source and Sink of the target Android

version can be determined. Arzt et al. detect Source, Sink,

and EntryPoint by parsing the manifest and dalvik

executables (dex). Then they perform a pollution analysis to

find the path from Source to Sink and report all discovered

paths.

Yue [8] proposed a strategy for replacing reflective call

statements with non-reflective call statements and

implemented a DyLoadDroid tool that can effectively

analyze the dynamic loading and reflection mechanism of

Android. At the same time, experiments have verified its

effectiveness in dealing with the taint analysis of Android

dynamic loading and reflection mechanisms.

Zhao [9] proposed a new privacy scanning technique to

solve the problem of matching privacy information with

behaviors in privacy policy texts and codes. The method

trains a BiLSTM (Bidirectional Long Short Term Memory)

model based on the attention mechanism, by which we can

determine whether the text contains private information or

not. Then, the statements where the privacy information is

located are analyzed and the negative and behavioral words

in the statements are extracted and recorded.

Wu [10] proposed TraceDroid for detecting Android

malware, TraceDroid uses a static analysis approach to

derive the possible execution trajectories of an application

and identify sensitive information, and also utilizes a

dynamic analysis approach to gather runtime information to

discover disguised malware. This hybrid approach achieves

better performance than purely static or dynamic analysis

methods. The ability to obtain more network traffic data and

provide better characterization of network behavior using

hybrid analysis methods. Finally, the transmission data will

be used for model training.

Sentana [11] proposed a static analysis method to analyze

the permissions, as well as tracking the third-party libraries

used by each app through decompilation and analyzing the

impact of third-party libraries on privacy. Subsequently,

malware was analyzed and some malware was captured. In

addition, the authors performed network measurements to

investigate the behavior of the network while the app was

running. Finally, the authors conducted an app compliance

and user reviews analysis to analyze privacy policy

compliance and user reviews of the apps, and used reviews

as one of the important parameters of security issues and the

likelihood of user privacy breaches in cryptocurrency wallet

apps.

Dynamic analysis refers to analyzing the function of a

function, clarifying the logic of a code, and excavating

possible privacy leaks by observing the state of a program

during its execution, such as register contents, function

execution results, memory usage, and so on. The most

famous of these is the TaintDroid framework [4] for the

Android platform. The modified Android virtual machine

taints and tracks sensitive data. It can track multiple Sources

and Sinks simultaneously. When sensitive information

leaves the system, the running mobile phone user will be

informed. The detection system based on this framework

has AppFence [5]. Cui [12] proposed a network traffic

analysis framework for detecting privacy leaks in Android

93

Apps, which utilizes dynamic hooking techniques to add

additional code to functions responsible for executing

HTTP(S) requests, and then saves unencrypted data and

corresponding code execution traces. In order to study

privacy leakage between host apps and third-party libraries

with fine-grained accountability, the authors also propose an

unsupervised approach that identifies third-party libraries by

correlating requests and code execution traces, and uses this

approach to differentiate traffic between host apps and third-

party libraries. Schindler [13] proposes a method for

identifying privacy leaks in third-party Android libraries

that combines dynamic and static analysis methods, using

the FlowDroid static analysis method and the Frida dynamic

analysis method, and finally adding mitm-proxy to detect

suspicious data sinks. Hao [14] presents a new clustering-

based approach to detect third-party libraries in Android

applications and perform privacy leakage analysis on third-

party libraries. The approach uses fuzzy matching to cluster

feature vectors into different clusters and uses cluster

prediction to detect third party libraries and also uses

dynamic instrumentation to monitor sensitive APIs and

perform privacy breach analysis.

3. PRIVACY LEAK DETECTION MECHANISM BASED ON

SERVICE BINDING

3.1. Related definitions

Definition 1: Application. Apps App installed on phones and

tablets.

Definition 2: Benign application. There is no privacy

disclosure in the program.

Definition 3: Malignant applications. There is a privacy

breach in the program.

Definition 4: Application Services. Some functional services

are provided by the application, such as shopping, video,

reading, etc.

Definition 5: Privacy Rights. Permissions involving mobile

terminal user's privacy data. It can be divided into two

categories. One is the Source privacy right. Some APIs it

manages can read the local privacy data of the mobile phone.

The other is Sink privacy, which manages some APIs that

can transfer data to external systems. For example: Internet,

SMS, etc.

Definition 6: Set of minimum privacy permissions. The

application service requires normal application privacy

permissions.

Definition 7: Service Binding. The application service

corresponds to a set of minimum privacy rights, and the

security of the application service determines the security of

the set of corresponding minimum privacy rights.

Definition 8: Sensitive data flow path. Refers to the path of

sensitive data between APIs from Source permissions to

APIs related to Sink permissions, in the form of

APISource APISink .

Definition 9: The characteristic abstraction of all sensitive

data flow paths of an application service can be defined as

S={r1,r2,r3,…,rn,c}, where ri represents a sensitive data flow

path and subscript n represents the total number of sensitive

data flow paths. c indicates the nature of the application,

such as benign or malignant.

3.2. System Model

Since dynamic analysis requires the execution of a program,

this will bring a certain load to the mobile terminal. In

addition, dynamic analysis does not ensure coverage of the

data flow path and has a high misjudgment. Therefore,

dynamic analysis is rarely used alone. Compared to dynamic

analysis, static analysis does not require the installation and

execution of applications. It only requires static scanning of

the application execution code. At the same time, static

analysis can effectively solve the problem of incomplete data

path coverage. Therefore, most academic studies use static

analysis to detect whether an application has a privacy

breach. For the static analysis, it is impossible to judge

whether there is a privacy leakage problem according to the

path of the sensitive data flow. In addition, when the existing

solution detects the application privacy leak, it generally

detects the privacy permission applied during application

installation, but the actual application service used by the

user only involves some privacy rights. Based on this, we

propose an application service privacy leak detection

framework. This solution combines the machine learning

algorithm with the sensitive data flow path of the detection

application for further analysis, and only detects the privacy

permissions of the application service binding, which can

improve the speed of application privacy detection.

As shown in Figure 1, there is a combination of static

analysis and detection record acquisition in the horizontal

direction. The static analysis is responsible for privacy leak

detection of the application, and the detection record

acquisition is to avoid duplicate detection of the same

application service. Therefore, in this solution, a unique

identifier (signature_package name_version number) is

created for each application, and the detection result of each

application service is timely uploaded to the database server.

When the next scheme accepts a detection task, it first

determines whether the application service of the application

to be detected has a detection result in the database. If a

detection result already exists in the database, the detection

result is obtained and the final detection result of the privacy

permission preset rule is given in combination with the

permission setting. If the database does not exist, privacy

leak detection is performed on the execution code of the

application service according to the normal flow. The

structure of the application service detection record table

stored in the database is shown in Table 1. The detection

identification attribute is whether the application has been

detected, 1 for yes, and 0 for no. Secure application services

refer to application services that do not leak privacy.

94

Service Binding

Event acquisition

Feature vector

Quantitative

assessment

Static detection
Evaluation

record
acquisition

Get privacy

permission set

based on service

type

Service history

evaluation record

Permission

Analysis Sensitive

API Analysis

Structure Analysis

Static features

Assessment model

Permission settings
Privacy permission settings

F
ee

db
ac

k
of

se
rv

ic
e

ev
al

ua
ti
on

re
su

lt
s

App

Database

Figure 1. The overall framework of the program.

In the vertical direction, privacy leak detection is divided
into multiple layers such as service binding, event
acquisition, feature vector, quantization detection, and
permission setting, which not only guarantees the detection
mechanism performance, but also satisfies the personalized
settings of different users' privacy rights.
The service binding refers to the minimum privacy
permission set that needs to be applied for the service type
binding in advance and determines whether the privacy
permission set bound by the application service is secure by
detecting the application service. A service is a function
provided by an application, for example: video, shopping,
music and reading. The minimum privacy permission set is
the privacy permission that needs to be applied for the
normal operation of the storage service. Privacy rights refer
to some access control policies that manage user-sensitive
data. There are generally read address books, read user
accounts, and read calendars.
Event acquisition refers to obtaining the application service’s
sensitive data flow path through static analysis, mainly
through the smut analysis to track the flow of sensitive data
in the application and record the path of sensitive data flow
between functions. Static analysis is to statically scan the
application instead of dynamically executing the application.
Therefore, the path coverage insufficiency caused by
dynamic analysis is directly avoided. Therefore, we can
statically analyze the application offline to identify the
application potential in privacy leaked in advance. So, we
choose to use static analysis to detect the application's
privacy leak behavior.

The eigenvectors refer to the quantification of the sensitive

data flow path into feature vectors. Because it is impossible

to determine whether there is a privacy leak behavior based

on whether there is a sensitive data flow path. Therefore, we

quantify the path of the sensitive flow from the static

analysis and continue to use the machine learning algorithm

for quantitative detection. We consider the application

privacy leak detection as a classification problem and count

the sensitive data flow paths of all malicious applications and

benign applications. Then we analyze the characteristics of

benign applications and malicious applications with different

sensitive data flow paths, select applications with statistical

differences, and construct a feature sample matrix through

the characteristics. The quantification definition of the

feature sample matrix is shown in Table 2.

Table 1. Application Service Test Record

Application ID Detection ID Security Application Service
Zelyy_com.zelyy.f

inance_1.6.0
1 [Financial management]

Bolton_com.fanli.
Android.apps_6.5.

0

1 [shopping]

 … … …

Table 2. Feature sample matrix
 feature
app name APISOURCR-->APISINK … Application

properties
app1 1 … GOOD

app2 1 … BAD

app3 0 … GOOD

… … … …

As shown in Table 2, the columns of the feature matrix

contain sensitive data flow paths and application properties

owned by malicious applications and benign applications to

mark whether the application is benign or malignant. If the

detected application has a sensitive data flow path listed, it is

set to 1, otherwise, it is set to 0. If the application has a

privacy breach, then its application is BAD. Otherwise, it is

GOOD. The permission setting is to meet the different

privacy requirements of the user. This solution provides the

user with the opening rules for autonomously presetting 13

privacy rights. When the solution completes the detection of

the leakage of the application service privacy, it will further

obtain the opening rules of the permission setting and the

privacy permission preset. Finally, it gives a scientific

suggestion to the user to assign the privacy permission to use

the application service binding.

3.3. Workflow

The process of testing the application by the solution is as

follows:

(1) It is reasonable to obtain the type of service to be tested

and the type of service to be verified. The type of application

service detected by the solution is the application service that

the user needs to use. The solution default user knows what

services the application can provide. In order to improve the

stability of the solution, after the user chooses to use the

application service, we will verify whether this application

has this application service. If it is owned, the solution will

be executed normally. Otherwise, the plan prompts the user

to continue choosing the type of service to use. The method

95

of application service verification is to decompile the

application permission application file and acquire the

permission set of the application. If the application request

permission set contains the minimum permission set

corresponding to the application service selected by the user.

Then, the user-selected application service is reasonable, and

vice versa, it is unreasonable.

(2) Acquire the application’s unique identifier

(signature_package name_version number) and use the

unique identifier and application service to query the history

detection result from the database. If there is, then the

opening rule of the detection result combined with the

permission setting gives a scientific suggestion for the

problem of giving the user privacy permission. The

implementation of the program ends, if there is no detection

result in the database, in execution (3).

(3) Get the minimum set of privacy permissions that need to

be detected according to the application service. Use static

analysis to get the path of sensitive data flow between

privacy-priority APIs.

(4) The path of the sensitive data stream is quantized into

feature vectors according to the feature vector definition.

(5) Construct a feature sample matrix based on benign

sample application and malignant sample application.

(6) Using machine learning algorithms to learn and classify

the applied feature vectors. The classification result refers to

whether the application is benign or malignant. Malignancy

refers to applications that have privacy breaches. On the

contrary, it refers to application security.

(7) In combination with the detection result, the permission

setting sets a preset opening rule for the privacy permission.

Finally, it gives reasonable suggestions for the application of

privacy rights for application services used by users.

4. SYSTEM IMPLEMENTATION

4.1. System Modules

This system is mainly aimed at privacy leak detection of

Android platform applications. System execution collects the

minimum set of privacy permissions required for the normal

operation of various types of application services. We refer

to the Google Play, Application treasure, and SnapPea

classification of the application. We use Android

applications in accordance with the services provided by the

classification. A total of 16 service types are listed in Table

3. We downloaded 20 of the most downloaded applications

for each service type. The AndroidManifest.xml of all

applications is decompiled by the APK tool to obtain the

permission of the application, and the intersection of all

application permission sets under a single service type is

collected as the minimum privacy permission set and saved

locally. Our comprehensive privacy data aggregates thirteen

important privacy privileges for the importance of users. 13

privacy privileges include: reading address books, reading

user accounts, reading calendars, reading obscure addresses,

AndroidManifest.xml

Classes.dex

APK

…
…

Unzip APK

Decompile

Manifest.xml

Decompile

Classes.dex

Get sensitive data

flow path

Static analysis

S
e
n
sitiv

e
 d

a
ta

 stre
a
m

 a
c
q
u
isitio

n
 m

o
d
u
le

Privacy permission

extraction

S
erv

ice R
ig

h
ts M

a
p

p
in

g
 M

o
d

u
le

Get

services

Get Service

Minimum

Privacy

Permission

Set

Machine learning

S
erv

ice S
ecu

rity
 E

v
a
lu

a
tio

n
 M

o
d

u
le

Build

eigenvectors

Random forest

classification

privacy setting

P
riv

a
cy

 p
erso

n
a
lity

 settin
g

 m
o
d

u
le

Blocking

permission

requests

Set

permissions

using rules

1

2

3

4

Figure 2. System implementation architecture

Table 3. 13 privacy rights

Authority API

Reading address book Android.permission.READ_CONTACTS

Reading user accounts Android.permission.GET_ACCOUNTS

Reading the calendar Android.permission.READ_CALENDAR

Read fuzzy address Android.permission-group.LOCATION

Read the exact address
Android.permission.ACCESS_FINE_LOC

ATION

camera Android.permission.CAMERA

recording Android.permission.RECORD_AUDIO

Read phone status
Android.permission.READ_PHONE_STA

TE

Reading call records Android.permission.READ_CALL_LOG

Reading SMS Android.permission.READ_SMS

The internet Android.permission.INTERNET

Read log Android.permission.READ_LOGS

Read Browser History

Access

com.Android.browser.permission.READ_

HISTORY_BOOKMARKS

reading exact addresses, cameras, recording, reading phone

status, reading call logs, reading logs, reading browser

history visits, reading text messages, networking. The system

implementation architecture is shown in Figure 2, and the

binding relationship between application services and

minimum privacy permissions is shown in Table 3. The

system function module is introduced as follows:

(1) Service Rights Mapping Module

According to the input of the service type, when the user or

the detected Android application applies for permission, the

module obtains the minimum privacy permission set of the

corresponding service from the local file according to the

service type. The mapping relationship between the

application service and the minimum privacy permission set

is shown in Table 4. In order to ensure no duplicate

96

detection, the module will record the privacy leak detection

result of each Android application service to the database

server. Each Android application has its own unique

identifier (signature_package name_version number), and we

will uniquely identify the application in the database to find

out whether the application service that has been detected by

the

Android application has already recorded the detection

result. If the historical detection result of the application

service is found, the detection result read from the database

can be directly submitted to the privacy personality setting

module.

(2) Sensitive data stream acquisition module

This module is responsible for obtaining the minimum

privacy permission set that the application has assigned to

the normal operation of the privacy right and the to-be-

detected service, obtaining the corresponding API function

according to the privacy right, and then analyzing whether

there is sensitive data flow path between these APIs through

the taint. This module mainly quotes FlowDroid [15] for

static analysis of applications. The FlowDroid open source

project includes five subprojects: soot, heros, jasmin, soot-

infoflow, soot-infoflow, and soot-infoflow-Android. Their

dependencies are shown in Figure 3.3. FlowDroid stores an

important SourcesAndSinks.txt file locally. This file is pre-

defined by SUSI's Android system. Source and Sink APIs

are prone to privacy leaks. There are 91 and 125 respectively.

FlowDroid's sensitive data flow path analysis process is as

follows:

a) FlowDroid collects source points, sink points, entrypoints,

and callbacks before performing dataflow analysis.

b) FlowDroid will decompile and parse the APK's

Manifest.xml file, generate the variable processMan, get its

packagename and assign it to

this.appPackageName="package name", get the entry point

of its program. The entry point of the Android application is

the four major components (Activity, Broadcast, Provider,

Service) as defined.

c) The program calls initializeSoot(true) to decompile

classes.dex to generate the stable file. Then, it calls the

dummyMainMethod method body function to collect the

callback function.

d) The program calls

calculateSourcesSinksEntrypoints("SourceAndSink.txt") to

collect the source and sink points.

e) The flow of FlowDroid has been improved here. We

obtained the minimum set of privacy permissions for

applications that have been granted privacy permissions and

service requests that need to be detected. At the same time,

the APIs recorded in SourceAndSink.txt are filtered to retain

only the APIs related to the normal operation of the service

to be detected.

f) After the preparation work is done, the program calls the

runInfoflow() function to construct the data flow diagram

(ICFG diagram), and analyzes whether there is a data flow

path between each Source and Sink according to the ICFG

diagram and saves the result in InfoflowResults.

Table 4. Service Privacy Rights Mapping Table
Application

service Minimum privacy set

navigation { Read precise location, network }

news
{ Read precise location, account, network,

camera, recording, read phone status }

Financial

management
{ Network, read phone status }

Social
{ Read precise location, network, camera,

recording, read phone status }

video { Network, camera, read phone status }

shopping
{ Read precise location, network, camera,

recording, read phone status }

communication { Network, camera, read phone status }

Office
{ Read address book, network, read phone

status }

Safety { Network, camera, read phone status }

tool
{ Read precise location, network, camera, read

phone status }

photography
{ Read precise location, network, camera,

recording, read phone status }

life
{ Reading logs, network, camera, reading exact

location, reading phone status }

system { network }

beautify
{ Reading logs, network, camera, read phone

status }

music
{ Reading logs, network, camera, reading precise

location, recording, reading phone status }

read none

Soot

Jasmin

Heros

Soot-Infolow

Soot-Infolow-Android

Figure 4. Dependencies between FlowDroid subprojects

(3) Service Security Detection Module

The sensitive data stream path obtained by the sensitive data

stream acquisition module is constructed according to the

abstract definition of the application service feature, and then

the locally constructed feature sample matrix is called. This

module refers to the random forest algorithm [16] to perform

the feature vector of the application service, and then

analyzes it to achieve application type classification.

The base classifier of the random forest is a decision tree.

The bootstrap method is used to obtain the training set for

constructing each decision tree from the training samples, the

decision tree is constructed in a binary recursive manner, and

the constructed decision tree is constructed into a forest.

When it is necessary to classify the test samples, the samples

97

are passed to each tree in the forest. Each tree gives a

classification result, and the most popular class among all

trees in the forest is selected as the final decision.

Given a training data set D with M features, the process of

the random forest algorithm can be described as follows:

a) Using the bootstrap method to generate K training subsets

of the same size as the original sample set. The essence of

the bootstrap method is a self-help method, a non-parametric

statistical method: N times of random and repeatable

sampling of the observed information (in this case, the

original sample) to obtain the training for constructing each

decision tree set. Bootstrap makes full use of given

observation information and does not require models, other

assumptions, or adds new observations. It has the

characteristics of stability and high efficiency.

b) For each data set, a decision tree is constructed using a

binary recursive approach. At each node of the decision tree,

one feature subspace is randomly sampled from all features,

and all possible splitting methods are calculated based on

this feature. We use the best splitting method for nodes (for

example, the maximum Gini metric). Then the nodes will

continue to split until the tree reaches the preset stop

condition. In this paper, the default stop condition is that the

depth of the decision tree reaches the set value.

c) Then we combine unpruned trees, integrate a random

forest, and use tree-to-tree voting as a sorting decision for

random forests. When the sample to be classified is input, the

classification result of the random forest output is determined

by the simple majority vote of the output result of each

decision tree.

(4) Privacy Personality Settings Module

Users can set up rules for privacy permissions in advance to

meet the actual different privacy requirements of users.

Users can turn on rule settings for a certain privacy

permission. For example, set open conditions and open

times. When the detection result of the service risk detection

module is safe, the scheme will then check whether the

privacy permission opening rule is set in the permission

setting module. If the user sets the privacy permission in

advance, then the rule is executed according to the setting

rule. If no privacy permission setting rules are enabled, the

solution will display the detection results on the system

interface immediately, including whether the service is

secure and which privacy rights can be assigned.

4.2. System Operation Process

System workflow chart shown in Figure 4, the specific steps

are as follows:

Step 1: Decompile Manifest.xml to obtain Application

Permission Set (APS).

Step 2: Get APK Unique ID (signature_package

name_version number).

Step 3: Get the application service type from user feedback.

Obtain the corresponding service security privacy

permissions (SSPP) from the local file.

Step 4: Verify that the user feeds back the validity of the

application service, and determine whether the application

permission set includes the minimum privacy permission set

bound by the application service. If included, go to step 5.

Otherwise, the user is prompted to re-select the application

service.

Figure 4. System work flow chart

Step 5: Obtain the security service set (SSS) and the

evaluation mark (EM) of the application from the database

according to the APK unique identifier. The SSS is used to

save the application detection security service set. The EM

is used to mark whether the application has been detected. If

EM=1 and SSS are empty, indicating that the application

has been detected and the security service is empty, then this

application is not recommended for installation. If EM=1,

SSS is not empty, it is judged whether the current service is

in the collection. If yes, it is directly given to the privacy

personality setting module, and the processing is performed

according to the user's pre-set permission. If it does not

exist, go to step 6. The application service test record table

in the database is shown in Table 1.

Step 6: Remove the SSPP from the privacy permission

granted by the application, and filter out the privacy

permission that needs to be detected.

Step 7: Enter the sensitive data stream acquisition module,

and use FlowDroid to trace the sensitive data flow path

between the APIs related to privacy permissions.

Step 8: The path of the sensitive data flow obtained in the

above step is converted into a feature vector by using the

definition of the applied feature vector. This feature vector

98

can be used as a test set of random forest classification

algorithms.

Step 9: Invoke the saved feature sample matrix file locally

as a training set of the random forest classification

algorithm. By analyzing the characteristics of benign

applications and malicious applications that have

differences in the path of sensitive data flows, those feature-

construction feature sample matrices with statistical

differences are selected.

Step 10: Use a random forest algorithm to analyze whether

this application is secure, and at the same time decide

whether the privacy of the application service binding is

safe. If the result of this service test is safe, then this service

is added to the SSS of this application in the database as a

cache for the next test. If this service test result is unsafe,

the feedback to the user that the user's selected application

service is insecure and suggests rejecting the assignment of

relevant privacy rights.

Step 11: The permission privacy right is combined with the

preset opening rules of the 13 privacy rights by the privacy

personality setting module and displayed on the system

interface in time to provide the user with feedback on the

security of the service and the privacy rights of the service

application.

4.3. System Interface

A privacy violation detection system based on service

binding includes:

(1) Application Service Evaluation

The main function is to perform privacy leak detection on

application services. The execution process is:

a) Select the application to be detected APK

b) Select the application service to use

c) Click Start Evaluation. The evaluation result will show the

detection results, including the security status of the

application service security and the corresponding service

privacy permission.

(2) Personality settings

The main function is to preset 13 privacy permission opening

rules to satisfy the user's individual needs, including settings

for privacy permission opening conditions and opening

times. When the user sets the permission opening rule, you

can click OK to complete the setting work.

5. EXPERIMENTAL VERIFICATION

5.1. Experimental Index

The system uses FlowDroid's excellent Android application

static analysis open source project to construct the tested

feature vectors based on the static analysis results of

FlowDroid, and then uses the random forest classification

algorithm to classify Android applications. This experiment

mainly verifies the following two aspects of performance

indicators:

(1) The accuracy of privacy leak detection results, recall rate,

and F-measure.

The three evaluation indexes used in the experiment [20]

were used to test the effect of this experiment. According to

the actual situation of the application, the results of the

experiment will result in four situations as follows.

a) True Positive, a benign application is judged to be a

benign application. This type of application is denoted as

TP(M). M is the application feature vector entered during

analysis.

b) True Negative, the malicious application is judged to be a

malicious application, and this type of application was

recorded as TN(M).

c) False Positive, a malicious application is judged to be a

benign application, and this type of application was recorded

as FP(M).

d) False Negative, a benign application is judged to be a

malicious application, and the application was noted as

FN(M).

The formula for calculating the accuracy A is

A=
TP M + TN M

TP M + TN M + FP M + FN M
(1)

The formulas for measuring the accuracy PB and recall rate

RB of benign applications are

PB=
TP M

TP M + FP M
(2)

RB=
TP M

TP M + FN M
(3)

The formulas for detecting the malicious application's

accuracy PM and recall rate RM are

PM=
TN M

TN M + FN M
(4)

RM=
TN M

TN M + FP M
(5)

TP M , TN M , FP M , and FN M respectively

indicate the number of applications within the determination

result.

The formulas for calculating the F-measure are

FB=
2PBRB

PB+RB
(6)

FM=
2PMRM

PM+RM
(7)

(2) Privacy leak detection time

We mainly examine the comparison between PDDMSB

privacy leak detection mechanism and FlowDroid's mobile

application privacy leak detection time consumption

proposed in this chapter.

5.2. Data Set

We download a total of 5,000 malicious applications from

VirusShare and Contagio's official website. Since many of

the sample apps are just different versions of the same app,

Table 5. Dataset Application Source And Size Composition

size
(MB)

Malignant applications
size

(MB)

Malignant applications
Virus

Share
Cont

agio total VirusS

hare
Cont

agio total

0~5 112 44 156 0~5 112 44 156
5~10 108 49 157 5~10 108 49 157

99

total 220 93 313 total 220 93 313

Table 6. Sample Application Collection
name App

properties
App

service
Application introduction

mushroom

Street

benign Shopping Mushroom Street, an e-

commerce website focused on
fashion women consumers,

provides girls with products

suitable for young women in
the fields of clothing, shoes,

bags, accessories, and beauty

makeup.

Android

Wallpaper

benign beautify Focus on millions of HD

wallpapers for the Android

platform.

Micro-
lock

screen

Malignant beautify A mobile phone lock screen
APP.

Book
artifact

Malignant read A newest, fastest, and most
comprehensive novel guide

reading assistant, covering

the hottest series of novels on
major websites, is a must-

read app for reading.

... … … …

there are many malicious apps whose APKs have been

damaged, We filter and replace a total of 3000 malicious

application APKs. And 456 benign application APKs are

downloaded from Google Play and App. The FlowDroid

project is a static analysis tool and his analysis ability is good

enough. However, it can only be considered a laboratory

product, FlowDroid is very sensitive to the size of the

application of the analysis of the APK. When the APK file to

be detected is only a few megabytes, FlowDroid can quickly

analyze the sensitive data flow path. When the APK file to

be detected is large, it needs to take up a lot of memory and

take a long time. This is the reason why FlowDroid can't be

used in the market. Therefore, due to the limited

performance of the experimental machine, the experiment

finally selected the APK file below 10M as the analysis

object.

The data set for this experiment finally contained 769

Android applications that existed in the real world, of which

313 malicious applications came from the datasets

VirusShare and Contagio. There are 456 benign applications

from Google Play, App Store and other app stores. Table 5

shows the source and size of the entire data set. Table 6

shows the sample application set.

5.3. Experimental Results and Performance Analysis

Experiment 1: Comparing privacy leak detection results with

PDDMSB and FlowDroid accuracy, recall rate, F-measure

Since FlowDroid has a long time to analyze static flow, we

did not perform service inspection on all application APKs.

We have chosen to verify the validity of the test results from

different service type dimensions. We selected a total of 160

sample APKs from 769 sample APKs, of which 5 benign

APKs and 5 malignant APKs were selected for each service

type. A total of 16 service types are shown in Table 3. We

have done 16 experiments in total according to the number

of service types. Each set of experiments verifies the

accuracy of current service test results, recall rate, and F-

measure. A total of 10 APKs for each group were tested

using the PDDMSB's prototype system. Record the results of

each APK test by group TP M , TN M , FP M , and

FN M . Finally, the accuracy rate, recall rate, and F-

measure of each group were calculated. In addition, we used

16 sample APKs only for static analysis using FlowDroid,

recorded the data and compared the detection accuracy of the

two detection mechanisms: recall rate and F-measure. The

comparison experiment results are shown in the Fig. 5~Fig.8.

According to the above experimental results, the accuracy

rate of the system detection results based on the service

binding-based privacy detection mechanism is close to 94%,

and the accuracy of the system detection results achieved

using FlowDroid as the static analysis is close to 89%.

Figure 5. Plan detection accuracy

j

60.00%
70.00%
80.00%
90.00%

100.00%

Co
rr

ec
t r

at
e

Service type

A_PDDMSB
A_FlowDroid

100

Figure 6. The program detects the accuracy of benign APKs and malicious APK

Figure 7. The program detects recalls of benign APKs and malicious APKs

Figure 8. Protesting F-measure against benign APK vs. malicious APK

We can conclude that the solution-based privacy leak

detection mechanism proposed by this scheme significantly

improves the accuracy of experimental test results.

Analyzing the reason shows that FlowDroid will mark an

application with a privacy leak path as a malicious

application. Therefore, the probability of misinterpreting a

benign application as a malicious application increases,

leading to a decrease in the overall accuracy of the detection

result and a decrease in the benign application recall rate.

Therefore, the accuracy rate of the test results of this

program is higher than that of FlowDroid test results.

Experiment 2: Compare privacy leak detection time with

PDDMSB and FlowDroid

Also, since FlowDroid takes a long time to analyze the static

flow of the application, we do not perform service inspection

on all application APKs. In this experiment, 10% of APK

applications were randomly selected from the total sample

set, for a total of 77 applications. There were 46 benign

applications and 31 malignant applications. A total of two

sets of experiments were performed. FlowDroid was also

used for static flow analysis, but one set was based on

application granularity and the other set was based on

service granularity. The experimental data was grouped by

50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
Ac

cu
ra

cy

Service type

PB_PDDNSB

PM_FlowDroid

PB_FlowDroid

PM_PDDMSB

g g y g

30.00%
50.00%
70.00%
90.00%

Re
ca

ll
ra

te

Service type

RB_flowDroid

RM_PDDMSB

RB_PDDMSB

RM_FlowDroid

g p g g

60.00%
70.00%
80.00%
90.00%

100.00%

F-
m

ea
su

re

Service type

FB_PDDMSB

FM_PDDMSB

FB_FlowDroid

FM_FlowDroid

101

application size and the average detection consumption time

for each group was calculated. The experimental results are

shown in Figure 9.

From the experimental results, when the application size is

0~4M, the detection consumption time based on the

application granularity is the same as the detection

consumption time based on the service. However, as

application size increases, service-based detection consumes

significantly less time. Since the privacy leak detection

mechanism based on the service granularity starts to detect,

some APIs corresponding to the privacy rights that are not

related to the application service are filtered out, which

effectively reduces the privacy permission API that the

FlowDroid needs the taint analysis. Therefore, the

experimental results are in line with the expectation.

Figure 9. Two detection mechanisms detect elapsed time

6. CONCLUSION

The main work of this paper is to propose a risk
detection solution based on service binding for Android
application privacy right management. Service binding
refers to the granulation of traditional assessment objects
based on the application level into service-based. This
project completes the classification of Android applications
by services, and statistically obtains the minimum privacy
set required for the normal execution of each service type
application. At the same time, it completes the secondary
development of the granular analysis of the FlowDroid tool
and completes the numerical conversion of the sensitive data
flow path of the Android application into a feature vector.
Finally, through experimental verification, the accuracy,
recall, and F-measure of PDDMSB and FlowDroid privacy
leak detection results were compared. Besides, the
experiment verifies that this scheme can effectively reduce
the detection time. In the subsequent work, we will consider
how to replace random forests with neural networks (e.g.,
deep neural networks) in the service security assessment
module, and utilize deep learning methods to achieve the
classification of feature vectors of Android applications.
Subsequently, we will develop a unified application solution
for different Android versions because the API functions
corresponding to the privacy permissions of different
Android versions will change, resulting in the invalidation of

the statistical sources and sinks in the SourcesToSinks.txt
file. For different operating systems, e.g., iOS and Windows,
we will explore the way applications set privacy permissions
and use private data, and apply the method proposed in this
paper to these operating systems to realize privacy
permission management.

ACKNOWLEDGMENT

We would like to thank the reviewers for their comments to

help us improve the quality of this paper. This work was

supported by the Key Technologies and Applications of

Resource Collaborative Scheduling for Cloud-Edge-

Network Integrated System Project of State Grid

Corporation of China under Grant no.5700-202318292A-1-

1-ZN.

REFERENCES

[1] Z. Yang and M. Yang, “LeakMiner: Detect information

leakage on android with static taint analysis,” in 2012

third world congress on software engineering, 2012,

pp. 101–104.

[2] Z. Zhao and F. C. Colon Osono, “‘TrustDroidTM’:

Preventing the use of SmartPhones for information

leaking in corporate networks through the used of static

analysis taint tracking,” in 2012 7th international

conference on malicious and unwanted software, 2012,

pp. 135–143.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,

“FlowDroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for android

apps,” in Proceedings of the 35th ACM SIGPLAN

conference on programming language design and

implementation, in PLDI ’14. New York, NY, USA:

Association for Computing Machinery, 2014, pp. 259–

269.

[4] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P.

McDaniel, “TaintDroid: An information flow tracking

system for real-time privacy monitoring on

smartphones,” Commun. Acm, vol. 57, no. 3, pp. 99–

106, Mar. 2014.

[5] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.

Wetherall, “These aren’t the droids you’re looking for:

Retrofitting android to protect data from imperious

applications,” in Proceedings of the 18th ACM

conference on computer and communications security,

in CCS ’11. New York, NY, USA: Association for

Computing Machinery, 2011, pp. 639–652.

[6] D. Schreckling, J. Köstler, and M. Schaff, “Kynoid:

Real-time enforcement of fine-grained, user-defined,

and data-centric security policies for Android,” Inf.

Secur. Tech. Rep., vol. 17, no. 3, pp. 71–80, 2013.

[7] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for

the fully automated classification and categorization of

android sources and sinks,” 2013.

p p

0
200
400
600
800

1000
1200
1400
1600

Co
ns

um
pt

io
n

tim
e

S

App size MB

FlowDroid

PDDMSB

102

[8] W. W. Hongzhou Yue, Yuqing Zhang, “Android static

taint analysis of dynamic loading and reflection

mechanism,” Comput. Res. Dev., vol. 54, no. 313–327,

2017.

[9] Y. Zhao, G. Yi, F. Liu, Z. Hui, and J. Zhao, “A

Framework for Scanning Privacy Information based on

Static Analysis,” in 2022 IEEE 22nd International

Conference on Software Quality, Reliability and

Security (QRS), Guangzhou, China: IEEE, Dec. 2022,

pp. 1135–1145.

[10] Y. Wu et al., “TraceDroid: Detecting Android Malware

by Trace of Privacy Leakage,” in Wireless Algorithms,

Systems, and Applications, vol. 13471, pp. 466–478,

2022.

[11] I. W. B. Sentana, M. Ikram, and M. A. Kaafar, “An

Empirical Analysis of Security and Privacy Risks in

Android Cryptocurrency Wallet Apps,” in Applied

Cryptography and Network Security, vol. 13906, pp.

699–725, 2023.

[12] H. Cui, G. Meng, Y. Zhang, W. Wang, D. Zhu, T. Su,

“TraceDroid: A Robust Network Traffic Analysis

Framework for Privacy Leakage in Android Apps,” in

Science of Cyber Security, vol. 13580, pp. 541–556,

2022.

[13] C. Schindler, M. Atas, T. Strametz, J. Feiner, and R.

Hofer, “Privacy Leak Identification in Third-Party

Android Libraries,” in 2022 Seventh International

Conference On Mobile And Secure Services

(MobiSecServ), Gainesville, FL, USA: IEEE, Feb.

2022, pp. 1–6.

[14] X. Hao, D. Ma, and H. Liang, “Detection and Privacy

Leakage Analysis of Third-Party Libraries in Android

Apps,” in Security and Privacy in Communication

Networks, vol. 462, pp. 569–587, 2023.

103

