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Abstract—Fuzz testing has emerged as a dominant approach 

for identifying vulnerabilities, significantly improving 

software development and testing. Yet, traditional fuzz 

testing often grapples with inefficiencies and poor code 

coverage, relying heavily on the practitioner's expertise. With 

the rapid advancements in machine learning and deep 

learning within artificial intelligence, these technologies 

promise to revolutionize fuzz testing. This article critically 

examines learning-based fuzz testing methodologies. It starts 

by outlining fuzz testing's concept, core procedures, and 

established strategies. The discussion then shifts to the 

integration of machine learning and deep learning in fuzz 

testing, encompassing seed generation, scheduling, test case 

mutation, selection, target program analysis, and result 

evaluation. The paper concludes by addressing the current 

research gaps in this domain and speculating on future trends 

and opportunities for growth. 

Keywords-fuzz testing; learning-based; machine learning; 
deep learning; software testing 

1. INTRODUCTION 

As software and applications grow in complexity, their 
internal code architectures become increasingly intricate, 
offering a broadened landscape for potential security 
vulnerabilities [1]. The complex code structures are likely to 
harbor numerous latent flaws, which hackers and malicious 
actors may exploit through various means in pursuit of system 
and application vulnerabilities. Such exploits can lead to data 
breaches, system crashes, service disruptions, and other 
security issues, thus necessitating dedicated detection 
methodologies to identify and rectify these vulnerabilities [2]. 
Current techniques for vulnerability discovery in software 
include static code analysis, dynamic code analysis, symbolic 
execution, and fuzz testing. Static code analysis [3] does not 
require the actual execution of the program; instead, it 
involves the direct examination of the source code or 
compiled binaries to identify potential issues. Dynamic code 
analysis [4] assesses a program's performance, security, and 
stability by executing the code and monitoring its behavior. 
Symbolic execution [5][6] tracks the values of symbolic 
variables during program execution, considering symbolic 
representations of inputs, thereby allowing for an analysis of 
the program's behavior under all possible inputs, which can 
aid in uncovering potential errors. 
However, the aforementioned vulnerability detection methods 
necessitate substantial knowledge of the target program, 

limiting their widespread application. In contrast, fuzz testing 
requires minimal understanding of the target and can be easily 
scaled to large applications. Due to its simplicity and low 
performance overhead, fuzz testing has indeed achieved 
success in many practical applications, particularly in 
identifying security vulnerabilities [7]. Fuzz testing involves 
feeding a plethora of random or semi-random data into the 
target application to provoke potential errors or anomalous 
behaviors, thereby aiding in the identification and rectification 
of latent issues. This testing methodology is commonly 
employed in assessing various software systems, including 
network protocols, file formats, operating systems, and 
applications [8]. 
This article concentrates on the analysis and summarization of 
grey-box fuzz testing efforts utilizing machine learning [9] 
and deep learning [10]. It begins by examining conventional 
fuzz testing methodologies, proceeds to explore scholarly 
articles on the application of machine learning and deep 
learning within the domain of fuzz testing, and compiles a 
summary and organization of the related research work. 
Section 2 provides a succinct overview of fuzz testing's 
procedures, classifications, and respective advantages and 
drawbacks. Section 3 introduces current, mature, and widely 
implemented research related to traditional grey-box fuzz 
testing. In Section 4, the enhancements and optimizations that 
machine learning and deep learning contribute to the fuzz 
testing process are summarized, discussing both previous and 
ongoing research integrating these two technologies into fuzz 
testing. Finally, the article analyzes the challenges associated 
with the application of machine learning and deep learning to 
fuzz testing and anticipates future directions for its 
development. 

2. TRADITIONAL FUZZ TESTING TECHNIQUES 

Inquiry into traditional fuzz testing has been predominantly 

focused on gray-box fuzz testing methodologies. The 

quintessence of gray-box fuzz testing resides in a trifecta of 

mechanisms: the feedback acquisition mechanism, the 

feedback processing mechanism, and the sample generation 

mechanism [11]. The feedback acquisition mechanism is 

tasked with garnering feedback information from the test 

subject during the testing process. The feedback processing 

mechanism, taking cues from this information, meticulously 

selects high-caliber samples from the mutated specimens to 

constitute the corpus for the subsequent iteration of test cases. 

The sample generation mechanism mutates samples within 

the corpus, spawning new variants to furnish the testing phase 

with fresh inputs. 
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2.1. Definition 

Fuzz testing, an automated or semi-automated technique, 

floods software with random or mutated inputs to detect 

defects or vulnerabilities, proving highly effective for 

dynamic vulnerability discovery in software and firmware 

[12][13]. Originally introduced by Miller et al [14]. to assess 

the reliability of Unix utilities, its relevance has grown with 

the expanding scale and complexity of software. Increasingly 

diverse applications of fuzz testing have emerged, often 

integrating with other software analysis methods to improve 

vulnerability detection and advance its complexity and 

functionality. 

Based on the underlying objectives and principles, fuzz testing 

can be categorized into black-box, white-box, and grey-box 

fuzz testing. Black-box fuzz testing [15][16][17] focuses on 

the external behaviors and input-output relations of 

applications, while white-box fuzz testing [18][19][20][21] 

combines fuzz testing with code analysis to gain a deeper 

understanding of the application's internals. Grey-box fuzz 

testing [22][23][24], merging these approaches, utilizes 

partial internal structure information and external behavior 

observations to generate more targeted test cases. 

Fuzz testing strategies can be delineated as generation-based 

and mutation-based fuzz testing. Generation-based fuzz 

testing crafts test cases directly from a specified model that 

delineates the anticipated inputs of the test program, such as 

the Peach Fuzzer developed by Eddington [25]. Mutation-

based fuzz testing, on the other hand, generates test cases by 

randomly mutating a given seed file or employing predefined 

mutation strategies, excelling at uncovering software 

vulnerabilities without leveraging a priori knowledge of the 

target program. The American Fuzzy Lop (AFL) [26] 

exemplifies a state-of-the-art mutation-based grey-box fuzzer. 

AFL employs a selection of predefined mutation operators to 

create diverse inputs in an attempt to trigger latent 

vulnerabilities within the program under test. Following AFL, 

numerous descendants have emerged, adopting different 

techniques to augment their efficacy. For instance, Böhme et 

al. [27] built upon AFL to design its extension, AFLFast, and 

subsequently integrated directionality into grey-box fuzz 

testing to devise the directed grey-box fuzzer AFLGo. Yue et 

al. [28] further refined the AFLFast model and introduced the 

adaptive energy-saving grey-box fuzzer EcoFuzz. 

In the context of fuzz testing approaches that navigate 

program exploration, fuzz testing can be categorized into 

coverage-based fuzz testing and directed fuzz testing. A 

primary objective of coverage-based fuzz testing is to achieve 

high code coverage in the target program, whether through 

methods such as those proposed by Böhme et al. [29] utilizing 

Markov models to construct the fuzz testing process, or the 

concepts advanced by Lemieux and Sen [30] that adjust 

mutation strategies to maintain deep coverage of the 

program—both aspire to attain high code coverage in the 

target program, i.e., coverage-guided grey-box fuzz testing 

(CGF). However, at times, the potentially erroneous code is 

known, obviating the need for increased code coverage; in 

such instances, directed fuzz testing techniques (DGF) can be 

employed for detection, thereby utilizing fuzzers generated by 

this technique for targeted vulnerabilities or error 

examination. For example, Chen et al. [31] explored the 

creation of precise fuzz testing memory layouts for directed 

fuzz testing.  

2.2. Basic Process 

The classical fuzz testing workflow includes input pre-

processing, test case generation [32][33], seed selection and 

scheduling [34][35], execution, target monitoring [36][37], 

and result analysis. Pre-processing prepares for testing by 

initializing the process through analysis of inputs and program 

information, often involving techniques like instrumentation, 

symbolic execution, and taint analysis. Following this, test 

case generation becomes central, with prevalent methods 

based on generation [38][39] and mutation [40][41][42]. 

Generated cases enter a seed pool where fuzz testing tools 

prioritize those likely to reveal anomalies. The execution 

module tests the target program with chosen cases while 

monitoring for anomalies to inform continued testing 

decisions. Finally, tools analyze anomalies to locate and 

diagnose causes, assessing the target software for 

vulnerabilities.  

2.3. Deficiencies 

As fuzz testing technology evolves, it has been widely applied 

in the field of security vulnerability detection, encompassing 

a variety of domains such as operating system kernels, the 

Internet of Things, software applications, and network 

protocols. Despite numerous advantages of fuzz testing—

including ease of deployment, scalability, and broad 

applicability—there are still some limitations, summarized as 

follows: 

� Limited Automation: Although traditional fuzz testing is 

categorized as a semi-automated testing technique, the 

processes of analyzing target software, constructing input 

data formats and specifications, and generating test cases 

still require substantial manual effort. Therefore, 

augmenting the automation and intelligence of fuzz 

testing practices is a research priority. 

� Inefficient Test Case Generation: Traditional mutation-

based strategies randomly mutate normal seeds, 

generating a vast number of test cases, but only a few 

trigger exceptions, leading to suboptimal results. This 

inefficiency arises from the methods' failure to deeply 

analyze the target program's internal structure and logic, 

weakening the test case generation's relevance to the 

program. 

� Uniform Test Case Selection and Scheduling: Fuzz 

testing often yields numerous test cases, yet many tools 

treat them uniformly, executing them sequentially 

without considering differences in execution paths or 

anomaly-triggering potential. This indiscriminate 

approach reduces fuzz testing's efficiency. Fuzz testing 
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tools should filter and schedule test cases based on 

specific criteria to improve testing outcomes. 

3. OVERVIEW OF LEARNING-BASED APPROACHES 

Learning-based methodologies enhance system performance 

by discerning patterns within data, primarily bifurcating into 

machine learning and deep learning. 

3.1. Machine Learning 

Machine learning [43], a branch of Artificial Intelligence (AI), 

is dedicated to the research and development of algorithms 

and models that enable computer systems to autonomously 

learn and enhance performance. The objective is to empower 

these systems to learn from experience without explicit 

programming. Pertinent concepts include: 

� Learning: Machine learning empowers computers to 

make more informed decisions by identifying data 

patterns and structures, enhancing future performance. 

� Data: Essential to machine learning, data facilitates 

experiential learning, with algorithms discerning patterns 

through extensive analysis. 

� Features: These are critical data descriptors that aid 

model interpretation. 

� Supervised and Unsupervised Learning: Supervised 

learning [44][45] employs annotated data to teach models 

to predict outcomes, while unsupervised learning [46][47] 

uncovers data patterns without labels. 

� Overfitting and Underfitting: Overfitting [48] occurs 

when a model excels with training data but fails on new 

data; underfitting [49] reflects a model's inability to learn 

sufficiently, impairing its performance on unseen data.  

3.2. Deep Learning 

Deep Learning [50] comprises machine learning methods 

rooted in multi-layered neural networks, enabling abstract and 

complex representation learning that excels in various tasks. 

Key concepts include: 

� Neural Networks: Arrangements of neurons (nodes) 

linked by edges, usually featuring input, hidden, and 

output layers. 

� Hierarchical Structure: The organization of neurons in 

layers, each performing specific computational roles, 

with "depth" indicating layer quantity. 

� Activation Functions: These determine neuron outputs 

and include variants like Rectified Linear Unit [51], 

Sigmoid [52], and Tanh [53], essential for learning 

complex patterns. 

� Backpropagation: A core training algorithm for deep 

learning models, it calculates loss function gradients to 

update parameters using gradient descent. 

In fuzz testing, prevalent learning models include RNNs, 

DQL, etc., as shown in Table 1.

 

Table 1. Common learning-based model in fuzz testing 

Abbreviation Full Name Papers Using the model 

MAB Multi-Armed Bandit model [58,78] 

RNN Recurrent Neural Network [56,57,58, 66,70] 

MCM Markov chain model [56,60,61] 

TS Thompson Sampling [59,63] 

FNN Feed-forward Neural Networks [65] 

DQL Deep Q-Learning [64,68,70] 

DDPG Deep Deterministic Policy Gradient [61] 

GAN Generative Adversarial Network [58,62] 

CNN Convolutional Neural Networks [67] 

GEN Graph Embedding Network [71] 

4. LEARNING BASED FUZZ TESTING TECHNIQUES 

Recent advancements in machine learning and deep learning 

have led researchers to apply these techniques to fuzz testing. 

Their goal is to extract insights from vast vulnerability data, 

using trained models to improve prediction, classification, and 

generation. This strategy aims to enhance the understanding 

of software vulnerabilities and increase the precision and 

efficiency of vulnerability detection, as illustrated in Figure 1. 

 

Recent work on the application of machine learning and deep 

learning in fuzz testing reveals a fourfold role for these 

technologies. First, refining the generation and scheduling of 

initial seed files; second, optimizing the mutation process of 

test cases; third, assessing software by predicting execution 

paths to guide the mutation and generation of test cases, 

enhancing efficiency; and fourth, applying machine learning 

for test result analysis or integrating with fuzz testing 

techniques to introduce functionalities like software 

evaluation and vulnerability exploitation.
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Figure 1. Learning-based fuzz testing framework 

4.1. Using Learning Based Models for Seed Inputs 

Optimizing 

Seed scheduling, which determines the initial test cases for 

fuzzing tools and the quantity of mutations for input seeds, 

significantly affects fuzz testing outcomes. Prioritizing seeds 

with higher crash probabilities and producing more mutations 

enhances the fuzzer's efficiency in exploring program paths 

and detecting potential errors. 

Identifying the exact test cases that cause software crashes is 

challenging due to randomness in fuzz testing. Researchers 

often use heuristic strategies for selecting seed test cases, but 

these don't always accurately reflect the likelihood of faults or 

allocate resources effectively, especially with various 

program characteristics. Inadequate seed scheduling can delay 

critical seed discovery and hinder resource allocation. To 

address this issue, Choi et al. [54] introduced a seed 

scheduling algorithm based on reinforcement learning. This 

algorithm aims to optimize seed input order and mutation 

resource distribution, thereby improving crash detection 

efficiency. This method can be applied universally to 

coverage-guided fuzz testing, independent of software 

structure. 

Fine-grained coverage metrics allow fuzzers to detect errors 

beyond traditional edge coverage. However, these metrics 

lead to larger seed pools with few effective scheduling 

algorithms. To address this, Wang et al. [55] introduced a 

multi-tiered coverage metric, integrating sensitive coverage 

indicators into grey-box fuzz testing, and developed a 

reinforcement learning-based hierarchical seed scheduling 

algorithm. This approach triggers more errors, achieves higher 

code coverage, and reaches coverage rates faster than existing 

methods. 

In fuzz testing, to boost code coverage and induce software 

crashes, researchers must craft a quality mutation seed set. 

Current studies rarely use seed input's initial execution paths 

to enhance coverage. Li et al. [56] introduced a machine 

learning framework correlating seed inputs with their 

execution paths, to guide new seed generation to activate 

unexplored paths. For the complex PDF file structure, they 

employed a Markov chain-based model for PDF execution 

path probabilities and an improved sequence-to-sequence 

recurrent neural network to generate PDFs from these paths 

and existing content. Tests confirm this framework's 

effectiveness in raising code coverage. 

Grammar-based fuzz testing excels for applications with 

structured inputs. Though creating input grammars manually 

is tedious and prone to errors, Godefroid et al. [57] automated 

this by learning input structures and semantics using a seq2seq 

recursive neural network. Their technique produces new seeds 

from seed file analysis, increasing fuzz testing efficiency and 

code coverage. Nichols et al. [58] used LSTM and GAN to 

learn from a seed corpus, generating new seeds and integrating 

GAN with the fuzz tester AFL, deepening path exploration 

and significantly raising the number of discovered paths and 

their length. These studies show machine learning can 

significantly enhance automation and efficiency in grammar-

based fuzz testing. 

4.2. Using Learning Based Models for Test Case Mutating 

Fuzz testing excels at detecting complex program 

vulnerabilities by generating numerous test cases, many of 

which are irrelevant. To improve, recent work has integrated 

machine learning with fuzz testing, focusing on mutating 

critical input bytes or using deep learning to guide beneficial 

mutations. 

Input 
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Karamcheti et al. [59] showed that an informed sampling of 

mutation operators can significantly improve AFL's efficacy. 

They devised an adaptive method combining Thompson 

sampling, machine learning, and bandit optimization, which 

tunes mutation distributions on the fly. This results in higher 

code coverage and quicker, more reliable crash detection than 

AFL's baseline and other AFL-based methods. 

Böttinger et al. [60] showed that viewing fuzz testing as a 

feedback-driven learning process enhances input generation 

quality. Using Markov Decision Process theory, they recast 

fuzz testing as a reinforcement learning challenge and 

developed a method based on deep Q-learning. This method 

effectively learns to select high-reward fuzzing operations. 

Their experiments confirmed the algorithm's ability to 

optimize new input generation based on ongoing feedback. 

Addressing inefficient fuzz testing from random test case 

mutations, Zhang et al. [61] used a Markov Decision Process 

to describe traditional fuzz testing and implemented the Deep 

Deterministic Policy Gradient (DDPG) algorithm. This 

approach selects high-reward mutations for program inputs, 

creating the reinforcement learning-based fuzzing system 

RLFUZZ. RLFUZZ uses a reinforcement learning algorithm 

to choose actions that maximize rewards, guiding sample 

mutations. Tested with various warm-up steps and activation 

functions, RLFUZZ showed substantial edge coverage 

improvements compared to baseline mutations and DQN 

algorithms. 

Sun et al. [62] introduced a VAE-GAN model that combines 

the strengths of Variational Autoencoders and Generative 

Adversarial Networks, using mean feature matching to 

quicken convergence and enhance test case variety. The 

VAE-GAN model outperformed traditional GANs, 

increasing code coverage by 11.87% and more effectively 

revealing unique crashes and hang-ups. 

Lee et al. [63] developed SEAMFUZZ, a fuzz testing method 

that tailors mutation strategies to seed inputs based on their 

syntactic and semantic characteristics, to employ a 

Thompson sampling algorithm to refine test case precision. 

SEAMFUZZ demonstrated greater effectiveness in path 

exploration and bug detection than other advanced fuzzing 

tools. 

Shao et al. [64] proposed an optimized seed mutation method 

for AFL that reduces redundant mutations by pinpointing 

effective bytes in seeds and using reinforcement learning to 

guide more impactful test case generation, yielding 

significant enhancements over traditional random mutations. 

4.3. Using Learning Based Models for Target Program 

Analysis 

Beyond using machine learning to refine seed inputs and 

mutation strategies, scholars have leveraged these models to 

predict execution paths and analyze program behavior, 

thereby improving fuzz testing. 

She et al. [65] note that treating fuzz testing as a machine 

learning task is common, yet smooth program execution paths 

are vital for effective gradient-based searches. They 

developed NEUZZ, a smoothing technique using a neural 

network to approximate control flows and calculate gradients, 

to guide input mutations to increase fault detection. This 

neural-guided fuzz testing method has significantly enhanced 

testing efficiency. 

Cheng et al. [66] propose a machine learning framework to 

mitigate traditional fuzz testing tools' reliance on predefined 

seed inputs for defect detection. The framework leverages 

neural networks to correlate input data with program 

execution paths, producing seed inputs that access unexplored 

code paths. This method not only improves code coverage but 

also enhances fuzz testing's effectiveness and efficiency by 

integrating with modern fuzzing mutation strategies. 

Experiments confirm its ability to boost code coverage and 

detect potential crashes. 

Zong et al. [67] introduce FuzzGuard, a deep learning method 

addressing inefficiencies in directed grey-box fuzz testing, 

characterized by inputs failing to reach target code segments. 

FuzzGuard predicts whether inputs will hit the target area, 

filtering out ineffective ones and enhancing test performance. 

The team also devises solutions for data imbalance and time 

constraints, with results showing FuzzGuard can increase 

testing speed and save up to 88% of testing time. Liang and 

Xiao [68] developed RLF, a deep reinforcement learning-

based algorithm for targeted fuzzing. RLF selects test samples 

by instrumenting programs and assessing distances between 

execution paths and targets. Using deep Q-Learning, RLF 

refines its strategy, making test selection deliberate and 

targeted, thus improving test case quality and targeted fuzz 

testing's efficiency. 

Li et al. [69] investigated machine learning applications in 

fuzz testing, addressing hash collisions and using edge 

knowledge. They created SpeedNeuzz, which uses advanced 

hash techniques and neural networks for simulating program 

behavior. SpeedNeuzz improves mutation strategies with 

gradient-based methods, enhancing edge coverage more than 

NEUZZ. 

Jeon and Moon [70] developed an algorithm to boost hybrid 

fuzz testing with deep reinforcement learning, creating Dr. 

PathFinder. This tool uses symbolic execution for test case 

generation and diverges from standard concolic execution by 

adaptively choosing paths. Its reinforcement learning-driven 

approach focuses on deeper paths, reducing ineffective test 

cases and memory usage, and controlling state space 

explosion. Dr. PathFinder matches or exceeds other bug 

fuzzers in finding deep-seated errors. 

Li et al. [71] introduced V-Fuzz, an evolutionary fuzzing 

framework for detecting vulnerabilities. Combining a graph 

neural network-based prediction model with an evolution-

inspired fuzzer, V-Fuzz targets and triggers vulnerabilities 

more effectively. Its tests confirm rapid error detection and 

have uncovered multiple security flaws, including three 

previously unknown vulnerabilities. 
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4.4. Using Learning Based Models for Test Results 

Evaluation 

Beyond enhancing seed scheduling, test case mutation, and 

target program analysis with machine learning, researchers 

have optimized fuzz testing phases. They use machine 

learning or deep learning to evaluate evolutionary algorithm-

based fuzzing outcomes, aiming to detect exceptions and 

improve vulnerability detection. 

Ming et al. [72], following a fuzz testing campaign on 

Intelligent Transportation Systems (ITS), leveraged machine 

learning to analyze the harvested request and response 

messages. This analysis facilitated the automatic 

identification of protocol vulnerabilities and related 

anomalies within the ITS, enhancing the efficacy and 

efficiency of fuzz testing analysis. 

Fuzz testing effectively uncovers memory corruption 

vulnerabilities, yet not all anomalies signify exploitable 

flaws. The intensive analysis of widespread crash data poses 

a major challenge to timely vulnerability discovery. To boost 

efficiency, researchers have turned to machine learning for 

parsing test characteristics, enabling the automatic 

identification of critical crashes and evaluation of their 

exploitability. For example, Tripathi et al. [73] have crafted a 

robust crash identification model using hardware-monitored 

runtime data and SVM analysis of core dumps. 

Simultaneously, Zhang and Thing [74] have expedited 

vulnerability detection by employing online classifiers to 

prioritize crashes, streamlining the identification and 

remediation of pressing vulnerabilities. These advances 

refine the vulnerability mining process, focusing efforts on 

severe crashes and hastening critical flaw resolution. 

Some studies have integrated machine learning with fuzz 

testing to create methodologies that enhance vulnerability 

detection. This includes analyzing software exploitability and 

using code generation techniques. By integrating these 

methods, researchers gain a deeper understanding of fuzz 

testing outputs, improving vulnerability discovery. Such 

comprehensive approaches not only identify anomalies but 

also analyze and support the remediation of potential 

vulnerabilities. Yan et al. [75] combined machine learning 

with fuzz testing for software measurement, using Bayesian 

algorithms and dynamic fuzz testing to refine predictions of 

software exploitability, thereby establishing a precise 

framework for its quantification. You et al. [76] utilized NLP 

for information extraction and semantic fuzz testing to extract 

vulnerability insights from sources like CVE reports and 

Linux git logs, facilitating a better understanding of 

vulnerabilities and guiding the automatic generation of Proof 

of Concept (PoC), thus making vulnerability mining more 

thorough and efficient. 

5. RESEARCH ISSUES 

Comparative assessment is vital for learning-based fuzz 

testing frameworks. This section compares datasets, 

framework features, and additional information in fuzz 

testing. It elucidates dataset attributes and their use in 

learning-based fuzz testing. Finally, the section addresses 

potential challenges and opportunities in this field.  

5.1. Dataset 

Datasets employed in learning-based fuzz testing frameworks 

encompass several varieties, as illustrated in Table 2. 

� Crafted by Columbia University's scholars, the LAVA-M 

[77] dataset, standing for Large Scale Automated 

Vulnerability Addition, is designed to facilitate fuzz 

testing and vulnerability discovery for researchers. This 

collection boasts a vast array of machine-crafted samples 

that illustrate diverse vulnerability types, including buffer 

overflows, format string weaknesses, and integer 

overflows. 

� The Peach Fuzzer [25] is a fuzz testing platform that 

uncovers flaws in software and protocols. It offers a 

flexible framework for creating varied fuzzing inputs for 

files, networks, and APIs. Its customization options allow 

for detailed test scenarios, and it integrates easily with 

automated testing systems. 

� The GNU binutils [78] are a collection of tools for 

creating, handling, and altering binary object files, 

essential in software development for transforming 

source code into executables and for their subsequent 

manipulation and debugging. Commonly paired with the 

GCC (GNU Compiler Collection), these utilities facilitate 

the compilation and linking of C and C++ programs. 

� The AFL [26] (American Fuzzy Lop) is a fuzzing tool 

focused on increasing the efficiency of vulnerability 

detection in software. It employs a dynamic feedback 

mechanism to autonomously generate and execute test 

cases, pinpointing potential software vulnerabilities. 

� The CGC [79] (Cyber Grand Challenge), orchestrated by 

DARPA, is an international cybersecurity competition 

promoting the advancement of automated defense 

systems. The challenge seeks to fortify digital security 

measures against escalating cyber threats by catalyzing 

the development and application of automated systems in 

cybersecurity. 

� The CB-multios [80] is a fuzzing framework designed to 

enhance operating system diversity. It employs advanced 

fuzzing techniques, integrating symbolic execution and 

coverage-guided test generation with mutation strategies, 

to reinforce the integrity of OS interfaces and syscalls. 

The platform enables researchers to devise and 

implement tailored fuzzing tests, using its custom 

mutation engine to explore various input combinations 

and address potential vulnerabilities. 

� Developed and maintained by Google, the Fuzzy Test 

Suite [81] is a suite of tools for fuzz testing that aids in 

detecting and fixing security vulnerabilities and bugs in 

software systems. It includes a range of utilities and 

techniques for crafting and running fuzz tests. 
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Table 2. Common datasets in learning-based fuzzing 

Dataset Name Brief Description Papers Using the dataset 

LAVA-M a dataset formed by inserting bugs into programs by LAVA [54,59,61,65,68,71] 

Peach Fuzzer A tool for generating diverse types of fuzzing inputs [25,56,59,63,64,68] 

GNU binutils GNU's binary toolset [27,28,28,30,31,54,62,63,65,69] 

AFL 
A Fuzzing tool including sample files for generating 

fuzzing inputs 
[54,55,56,60,67,68] 

Cyber Grand Challenge Global cybersecurity race [55,59] 

CB-multios CGC binary file [70] 

Google Fuzzy Test Suite A collection of tools for conducting fuzzing [11,55] 

5.2. Learning Based Fuzz Testing Framework 

To ensure a comprehensive survey, this article compiles a 

decade's fuzzy testing papers, chronologically presented in 

Figure 2. The trend shows an increasing publication volume, 

with a surge in learning-based fuzzy testing research since 

2016, indicating a growing interest in applying learning 

methodologies to fuzzy testing. 

 
Figure 2. Papers on Fuzz Testing from 2013 to 2023 

The efficiency of fuzz testing is primarily contingent upon 

factors such as the quality of initial seeds, seed selection and 

scheduling techniques, and case mutation strategies. Hence, a 

multitude of studies have integrated learning-based methods 

into these aspects, yielding an array of sophisticated learning-

based fuzz testing frameworks, cataloged in Table 3. This 

paper segments these frameworks into four categories, each 

corresponding to the frameworks that utilize learning-based 

models to enhance the fuzz testing cycle, as discussed in the 

previous section. 

The initial category involves frameworks that enhance seed 

scheduling with learning-based models, notably SampleFuzz 

and GAN-AFL. The core process, illustrated in Figure 3, 

involves the following key steps: 

� Data Collection: Compile data on seed performance and 

test outcomes. 

� Feature Extraction: Derive key attributes from seeds and 

their executions, such as input size, execution trajectory, 

code coverage, and time spent. 

� Model Training: Train deep learning models using the 

gathered data and identified features. 

� Seed Assessment: Evaluate seeds with the aid of the 

trained models. 

� Adaptive Scheduling: Dynamically prioritize seeds based 

on model assessments to refine the test progression. 
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This methodology provides a more adaptive alternative to 

static rules, continuously learning from new test feedback to 

optimize its scheduling algorithms. 

Target Program

Generate path
Path Corpus

Generate seed 

input Seed Corpus

New Seed 

InputReward

Learning-based 

Model

 
Figure 3. Generating new fuzzing seeds using learning-based 

framework 

The second category employs learning-based methods like the 

RLFUZZ and VecSeeds models to refine test case mutation 

strategies, often through reinforcement learning, as illustrated 

in Figure 4. 

Target Program

Select mutation 

operation
Reward

Evaluation and 

screening

Learning-based 

Model

 
Figure 4. The architecture of testcase mutation using 

learning-based model 

Test case mutation involves altering test inputs to reveal 

software defects. Machine learning optimization enhances 

bug detection efficiency and reduces testing costs. For 

example, models learn optimal mutations through trial and 

error, adjusting strategies based on feedback regarding 

whether new code paths or crashes were triggered. Clustering 

algorithms also group test cases to prioritize mutating those 

more likely to expose vulnerabilities, offering more targeted 

and adaptable mutations than traditional methods. 

The third category adopts learning-based methods for direct 

analysis of the target software, exemplified by the 

SpeedNeuzz and V-Fuzz models which leverage machine 

learning to predict execution paths and behavior, guiding test 

case mutation and generation to improve fuzz testing results. 

The process, illustrated in Figure 5, starts with data collection 

from the target program, including inputs, responses, 

exceptions, system calls, and performance metrics. This is 

followed by feature selection—determining which data 

components are valuable for predicting vulnerabilities. With 

chosen features and collected data, a model is trained to 

produce new test cases, enhancing the probability of 

detecting unknown program errors or vulnerabilities. 

Target Program Testcase

Path prediction
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Learning-based 

Model

 
Figure 5. The framework of analyzing the diagram of the 

target program using learning-based model 

The fourth category uses machine or deep learning to refine 

fuzz test analyses, detect anomalies and uncover 

vulnerabilities. The process begins with training the model on 

fuzzing results, including crash reports, exception logs, 

memory leaks, and code coverage. The model is then 

evaluated on a separate test set, and finally applied to new 

fuzz test data to identify potential security flaws and their 

origins. 

This article reviews the evolution of learning-driven fuzz 

testing over the past decade, highlighting frameworks that 

incorporate learning to enhance fuzz testing. Representative 

frameworks and their succinct synopses are delineated in 

Table 3. This paper catalogs the characteristics, mechanisms, 

datasets, and learning models, emphasizing the last five years' 

technological strides due to machine learning and the demand 

for software security. Comparing different frameworks 

remains difficult without unified performance standards. 
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Table 3. Learning-based fuzzing framework and functionality 

Model Name Brief Description Learning Model Paper 

SampleFuzz 
Using a learned input probability distribution to intelligently guide where 

to fuzz inputs 
RNN [57] 

GAN-AFL 
Using GAN models to reinitialize AFL system with novel seed files to 

improve its performance 
GAN [58] 

RLFUZZ Using reinforcement learning algorithm to guide testcase variation Markov chain, DDPG [61] 

VecSeeds Provide inputs conforming to the input format for programs tested GAN [62] 

SEAMFUZZ 
Automatically capturing features of individual seed inputs and applying 

different mutation strategies to distinct seed inputs 
MAB, TS [63] 

RLFuzz-IF Training the mutator's behavior on test cases to optimize mutations DQL [64] 

NEUZZ 
Approximating and smoothing the branch behavior of the program to 
enhance the efficiency of fuzzing 

FNN [65] 

FuzzGuard 
Predicting the reachability of inputs before executing the target program, 
filtering out unreachable inputs to enhance the performance of fuzzing 

CNN [67] 

RLF 
Calculating the distance between execution paths and the target, guiding 

the selection of test samples 
DQL [68] 

SpeedNeuzz 
Reducing the randomness in test case mutations to generate high-quality 

inputs 
DNN [69] 

Dr.PathFinder 
Allowing efficient memory usage and alleviating the state explosion 

problem 
RNN, DQL [70] 

V-Fuzz 
Efficiently and rapidly discovering errors in binary programs within a 
limited time 

GEN [71] 

5.3. Challenges And Opportunities 

Machine learning and deep learning drive innovations in 

cybersecurity fuzzing, presenting a critical topic for 

discussion. The variety in software complicates vulnerability 

detection, especially in large systems with novel weaknesses. 

Challenges persist: 

� Diverse data types, from integers to images, require 

models to adapt to dynamic software inputs, which may 

shift in type or format during operation. 

� Models must discern complex vulnerability patterns 

across multiple points and layers, demanding incremental 

or online training to stay effective against emerging 

threats. 

� The efficacy of machine learning in fuzz testing hinges 

on the quality and quantity of training data, often scarce 

in specialized domains. Manual data collection is 

laborious, and dataset quality crucially influences model 

training and generalization. Ideal datasets must be 

unbiased, with a balanced mix of positive and negative 

samples. 

In grey-box or white-box fuzzing, limited program analysis 

restricts feature extraction and utilization. Future models 

should leverage advanced capabilities to extract and use 

program features more accurately and holistically, including 

semantic information. These improvements will enhance the 

precision and effectiveness of vulnerability detection, thus 

strengthening software security. 

6. CONCLUSION 

Fuzz testing, a key vulnerability detection method, has gained 

attention for its automation and scalability. The integration of 

machine learning has invigorated this field, bolstering 

efficiency and precision in identifying vulnerabilities. These 

technologies enable models to generate targeted test cases, 

increasing the likelihood of exposing vulnerabilities and 

adapting to evolving threats. 

The paper examines the growth of learning-based fuzz testing. 

It starts with an introduction to fuzz testing and traditional 

methods, then explores learning-based enhancements at 

various stages, including test case development and result 

analysis. It underscores learning-based methods' role in 

refining vulnerability detection. The conclusion calls for 

continued research in this area to further advance security 

assessments and devise sophisticated solutions for emerging 

security challenges. 
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