
A Comprehensive Review of Learning-based Fuzz Testing Techniques

Hao Cheng1, Dongcheng Li2,*, Man Zhao1, Hui Li1, and W. Eric Wong3

1School of Computer Science, China University of Geosciences, Wuhan, China
2Department of Computer Science, California State Polytechnic University - Humboldt, Arcata, USA

3Department of Computer Science, University of Texas at Dallas, Richardson, USA

haognehc@163.com, dl313@humboldt.edu, zhaoman@cug.edu.cn, huili@vip.sina.com, ewong@utdallas.edu

*corresponding author

Abstract—Fuzz testing has emerged as a dominant approach

for identifying vulnerabilities, significantly improving

software development and testing. Yet, traditional fuzz

testing often grapples with inefficiencies and poor code

coverage, relying heavily on the practitioner's expertise. With

the rapid advancements in machine learning and deep

learning within artificial intelligence, these technologies

promise to revolutionize fuzz testing. This article critically

examines learning-based fuzz testing methodologies. It starts

by outlining fuzz testing's concept, core procedures, and

established strategies. The discussion then shifts to the

integration of machine learning and deep learning in fuzz

testing, encompassing seed generation, scheduling, test case

mutation, selection, target program analysis, and result

evaluation. The paper concludes by addressing the current

research gaps in this domain and speculating on future trends

and opportunities for growth.

Keywords-fuzz testing; learning-based; machine learning;
deep learning; software testing

1. INTRODUCTION

As software and applications grow in complexity, their
internal code architectures become increasingly intricate,
offering a broadened landscape for potential security
vulnerabilities [1]. The complex code structures are likely to
harbor numerous latent flaws, which hackers and malicious
actors may exploit through various means in pursuit of system
and application vulnerabilities. Such exploits can lead to data
breaches, system crashes, service disruptions, and other
security issues, thus necessitating dedicated detection
methodologies to identify and rectify these vulnerabilities [2].
Current techniques for vulnerability discovery in software
include static code analysis, dynamic code analysis, symbolic
execution, and fuzz testing. Static code analysis [3] does not
require the actual execution of the program; instead, it
involves the direct examination of the source code or
compiled binaries to identify potential issues. Dynamic code
analysis [4] assesses a program's performance, security, and
stability by executing the code and monitoring its behavior.
Symbolic execution [5][6] tracks the values of symbolic
variables during program execution, considering symbolic
representations of inputs, thereby allowing for an analysis of
the program's behavior under all possible inputs, which can
aid in uncovering potential errors.
However, the aforementioned vulnerability detection methods
necessitate substantial knowledge of the target program,

limiting their widespread application. In contrast, fuzz testing
requires minimal understanding of the target and can be easily
scaled to large applications. Due to its simplicity and low
performance overhead, fuzz testing has indeed achieved
success in many practical applications, particularly in
identifying security vulnerabilities [7]. Fuzz testing involves
feeding a plethora of random or semi-random data into the
target application to provoke potential errors or anomalous
behaviors, thereby aiding in the identification and rectification
of latent issues. This testing methodology is commonly
employed in assessing various software systems, including
network protocols, file formats, operating systems, and
applications [8].
This article concentrates on the analysis and summarization of
grey-box fuzz testing efforts utilizing machine learning [9]
and deep learning [10]. It begins by examining conventional
fuzz testing methodologies, proceeds to explore scholarly
articles on the application of machine learning and deep
learning within the domain of fuzz testing, and compiles a
summary and organization of the related research work.
Section 2 provides a succinct overview of fuzz testing's
procedures, classifications, and respective advantages and
drawbacks. Section 3 introduces current, mature, and widely
implemented research related to traditional grey-box fuzz
testing. In Section 4, the enhancements and optimizations that
machine learning and deep learning contribute to the fuzz
testing process are summarized, discussing both previous and
ongoing research integrating these two technologies into fuzz
testing. Finally, the article analyzes the challenges associated
with the application of machine learning and deep learning to
fuzz testing and anticipates future directions for its
development.

2. TRADITIONAL FUZZ TESTING TECHNIQUES

Inquiry into traditional fuzz testing has been predominantly

focused on gray-box fuzz testing methodologies. The

quintessence of gray-box fuzz testing resides in a trifecta of

mechanisms: the feedback acquisition mechanism, the

feedback processing mechanism, and the sample generation

mechanism [11]. The feedback acquisition mechanism is

tasked with garnering feedback information from the test

subject during the testing process. The feedback processing

mechanism, taking cues from this information, meticulously

selects high-caliber samples from the mutated specimens to

constitute the corpus for the subsequent iteration of test cases.

The sample generation mechanism mutates samples within

the corpus, spawning new variants to furnish the testing phase

with fresh inputs.

150

2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR)

2835-2823/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSSR61934.2024.00024

2.1. Definition

Fuzz testing, an automated or semi-automated technique,

floods software with random or mutated inputs to detect

defects or vulnerabilities, proving highly effective for

dynamic vulnerability discovery in software and firmware

[12][13]. Originally introduced by Miller et al [14]. to assess

the reliability of Unix utilities, its relevance has grown with

the expanding scale and complexity of software. Increasingly

diverse applications of fuzz testing have emerged, often

integrating with other software analysis methods to improve

vulnerability detection and advance its complexity and

functionality.

Based on the underlying objectives and principles, fuzz testing

can be categorized into black-box, white-box, and grey-box

fuzz testing. Black-box fuzz testing [15][16][17] focuses on

the external behaviors and input-output relations of

applications, while white-box fuzz testing [18][19][20][21]

combines fuzz testing with code analysis to gain a deeper

understanding of the application's internals. Grey-box fuzz

testing [22][23][24], merging these approaches, utilizes

partial internal structure information and external behavior

observations to generate more targeted test cases.

Fuzz testing strategies can be delineated as generation-based

and mutation-based fuzz testing. Generation-based fuzz

testing crafts test cases directly from a specified model that

delineates the anticipated inputs of the test program, such as

the Peach Fuzzer developed by Eddington [25]. Mutation-

based fuzz testing, on the other hand, generates test cases by

randomly mutating a given seed file or employing predefined

mutation strategies, excelling at uncovering software

vulnerabilities without leveraging a priori knowledge of the

target program. The American Fuzzy Lop (AFL) [26]

exemplifies a state-of-the-art mutation-based grey-box fuzzer.

AFL employs a selection of predefined mutation operators to

create diverse inputs in an attempt to trigger latent

vulnerabilities within the program under test. Following AFL,

numerous descendants have emerged, adopting different

techniques to augment their efficacy. For instance, Böhme et

al. [27] built upon AFL to design its extension, AFLFast, and

subsequently integrated directionality into grey-box fuzz

testing to devise the directed grey-box fuzzer AFLGo. Yue et

al. [28] further refined the AFLFast model and introduced the

adaptive energy-saving grey-box fuzzer EcoFuzz.

In the context of fuzz testing approaches that navigate

program exploration, fuzz testing can be categorized into

coverage-based fuzz testing and directed fuzz testing. A

primary objective of coverage-based fuzz testing is to achieve

high code coverage in the target program, whether through

methods such as those proposed by Böhme et al. [29] utilizing

Markov models to construct the fuzz testing process, or the

concepts advanced by Lemieux and Sen [30] that adjust

mutation strategies to maintain deep coverage of the

program—both aspire to attain high code coverage in the

target program, i.e., coverage-guided grey-box fuzz testing

(CGF). However, at times, the potentially erroneous code is

known, obviating the need for increased code coverage; in

such instances, directed fuzz testing techniques (DGF) can be

employed for detection, thereby utilizing fuzzers generated by

this technique for targeted vulnerabilities or error

examination. For example, Chen et al. [31] explored the

creation of precise fuzz testing memory layouts for directed

fuzz testing.

2.2. Basic Process

The classical fuzz testing workflow includes input pre-

processing, test case generation [32][33], seed selection and

scheduling [34][35], execution, target monitoring [36][37],

and result analysis. Pre-processing prepares for testing by

initializing the process through analysis of inputs and program

information, often involving techniques like instrumentation,

symbolic execution, and taint analysis. Following this, test

case generation becomes central, with prevalent methods

based on generation [38][39] and mutation [40][41][42].

Generated cases enter a seed pool where fuzz testing tools

prioritize those likely to reveal anomalies. The execution

module tests the target program with chosen cases while

monitoring for anomalies to inform continued testing

decisions. Finally, tools analyze anomalies to locate and

diagnose causes, assessing the target software for

vulnerabilities.

2.3. Deficiencies

As fuzz testing technology evolves, it has been widely applied

in the field of security vulnerability detection, encompassing

a variety of domains such as operating system kernels, the

Internet of Things, software applications, and network

protocols. Despite numerous advantages of fuzz testing—

including ease of deployment, scalability, and broad

applicability—there are still some limitations, summarized as

follows:

� Limited Automation: Although traditional fuzz testing is

categorized as a semi-automated testing technique, the

processes of analyzing target software, constructing input

data formats and specifications, and generating test cases

still require substantial manual effort. Therefore,

augmenting the automation and intelligence of fuzz

testing practices is a research priority.

� Inefficient Test Case Generation: Traditional mutation-

based strategies randomly mutate normal seeds,

generating a vast number of test cases, but only a few

trigger exceptions, leading to suboptimal results. This

inefficiency arises from the methods' failure to deeply

analyze the target program's internal structure and logic,

weakening the test case generation's relevance to the

program.

� Uniform Test Case Selection and Scheduling: Fuzz

testing often yields numerous test cases, yet many tools

treat them uniformly, executing them sequentially

without considering differences in execution paths or

anomaly-triggering potential. This indiscriminate

approach reduces fuzz testing's efficiency. Fuzz testing

151

tools should filter and schedule test cases based on

specific criteria to improve testing outcomes.

3. OVERVIEW OF LEARNING-BASED APPROACHES

Learning-based methodologies enhance system performance

by discerning patterns within data, primarily bifurcating into

machine learning and deep learning.

3.1. Machine Learning

Machine learning [43], a branch of Artificial Intelligence (AI),

is dedicated to the research and development of algorithms

and models that enable computer systems to autonomously

learn and enhance performance. The objective is to empower

these systems to learn from experience without explicit

programming. Pertinent concepts include:

� Learning: Machine learning empowers computers to

make more informed decisions by identifying data

patterns and structures, enhancing future performance.

� Data: Essential to machine learning, data facilitates

experiential learning, with algorithms discerning patterns

through extensive analysis.

� Features: These are critical data descriptors that aid

model interpretation.

� Supervised and Unsupervised Learning: Supervised

learning [44][45] employs annotated data to teach models

to predict outcomes, while unsupervised learning [46][47]

uncovers data patterns without labels.

� Overfitting and Underfitting: Overfitting [48] occurs

when a model excels with training data but fails on new

data; underfitting [49] reflects a model's inability to learn

sufficiently, impairing its performance on unseen data.

3.2. Deep Learning

Deep Learning [50] comprises machine learning methods

rooted in multi-layered neural networks, enabling abstract and

complex representation learning that excels in various tasks.

Key concepts include:

� Neural Networks: Arrangements of neurons (nodes)

linked by edges, usually featuring input, hidden, and

output layers.

� Hierarchical Structure: The organization of neurons in

layers, each performing specific computational roles,

with "depth" indicating layer quantity.

� Activation Functions: These determine neuron outputs

and include variants like Rectified Linear Unit [51],

Sigmoid [52], and Tanh [53], essential for learning

complex patterns.

� Backpropagation: A core training algorithm for deep

learning models, it calculates loss function gradients to

update parameters using gradient descent.

In fuzz testing, prevalent learning models include RNNs,

DQL, etc., as shown in Table 1.

Table 1. Common learning-based model in fuzz testing

Abbreviation Full Name Papers Using the model

MAB Multi-Armed Bandit model [58,78]

RNN Recurrent Neural Network [56,57,58, 66,70]

MCM Markov chain model [56,60,61]

TS Thompson Sampling [59,63]

FNN Feed-forward Neural Networks [65]

DQL Deep Q-Learning [64,68,70]

DDPG Deep Deterministic Policy Gradient [61]

GAN Generative Adversarial Network [58,62]

CNN Convolutional Neural Networks [67]

GEN Graph Embedding Network [71]

4. LEARNING BASED FUZZ TESTING TECHNIQUES

Recent advancements in machine learning and deep learning

have led researchers to apply these techniques to fuzz testing.

Their goal is to extract insights from vast vulnerability data,

using trained models to improve prediction, classification, and

generation. This strategy aims to enhance the understanding

of software vulnerabilities and increase the precision and

efficiency of vulnerability detection, as illustrated in Figure 1.

Recent work on the application of machine learning and deep

learning in fuzz testing reveals a fourfold role for these

technologies. First, refining the generation and scheduling of

initial seed files; second, optimizing the mutation process of

test cases; third, assessing software by predicting execution

paths to guide the mutation and generation of test cases,

enhancing efficiency; and fourth, applying machine learning

for test result analysis or integrating with fuzz testing

techniques to introduce functionalities like software

evaluation and vulnerability exploitation.

152

Figure 1. Learning-based fuzz testing framework

4.1. Using Learning Based Models for Seed Inputs

Optimizing

Seed scheduling, which determines the initial test cases for

fuzzing tools and the quantity of mutations for input seeds,

significantly affects fuzz testing outcomes. Prioritizing seeds

with higher crash probabilities and producing more mutations

enhances the fuzzer's efficiency in exploring program paths

and detecting potential errors.

Identifying the exact test cases that cause software crashes is

challenging due to randomness in fuzz testing. Researchers

often use heuristic strategies for selecting seed test cases, but

these don't always accurately reflect the likelihood of faults or

allocate resources effectively, especially with various

program characteristics. Inadequate seed scheduling can delay

critical seed discovery and hinder resource allocation. To

address this issue, Choi et al. [54] introduced a seed

scheduling algorithm based on reinforcement learning. This

algorithm aims to optimize seed input order and mutation

resource distribution, thereby improving crash detection

efficiency. This method can be applied universally to

coverage-guided fuzz testing, independent of software

structure.

Fine-grained coverage metrics allow fuzzers to detect errors

beyond traditional edge coverage. However, these metrics

lead to larger seed pools with few effective scheduling

algorithms. To address this, Wang et al. [55] introduced a

multi-tiered coverage metric, integrating sensitive coverage

indicators into grey-box fuzz testing, and developed a

reinforcement learning-based hierarchical seed scheduling

algorithm. This approach triggers more errors, achieves higher

code coverage, and reaches coverage rates faster than existing

methods.

In fuzz testing, to boost code coverage and induce software

crashes, researchers must craft a quality mutation seed set.

Current studies rarely use seed input's initial execution paths

to enhance coverage. Li et al. [56] introduced a machine

learning framework correlating seed inputs with their

execution paths, to guide new seed generation to activate

unexplored paths. For the complex PDF file structure, they

employed a Markov chain-based model for PDF execution

path probabilities and an improved sequence-to-sequence

recurrent neural network to generate PDFs from these paths

and existing content. Tests confirm this framework's

effectiveness in raising code coverage.

Grammar-based fuzz testing excels for applications with

structured inputs. Though creating input grammars manually

is tedious and prone to errors, Godefroid et al. [57] automated

this by learning input structures and semantics using a seq2seq

recursive neural network. Their technique produces new seeds

from seed file analysis, increasing fuzz testing efficiency and

code coverage. Nichols et al. [58] used LSTM and GAN to

learn from a seed corpus, generating new seeds and integrating

GAN with the fuzz tester AFL, deepening path exploration

and significantly raising the number of discovered paths and

their length. These studies show machine learning can

significantly enhance automation and efficiency in grammar-

based fuzz testing.

4.2. Using Learning Based Models for Test Case Mutating

Fuzz testing excels at detecting complex program

vulnerabilities by generating numerous test cases, many of

which are irrelevant. To improve, recent work has integrated

machine learning with fuzz testing, focusing on mutating

critical input bytes or using deep learning to guide beneficial

mutations.

Input

assessment

Seed corpusSeed

generation

Seed scheduling

and filtering

Program analysis

and monitoring
BUGs

Dataset

Testcase
Mutation

Fuzzing core framework

perspective1 perspective2 perspective3

other perspectives

Machine learning or deep learning models

Integrated application

153

Karamcheti et al. [59] showed that an informed sampling of

mutation operators can significantly improve AFL's efficacy.

They devised an adaptive method combining Thompson

sampling, machine learning, and bandit optimization, which

tunes mutation distributions on the fly. This results in higher

code coverage and quicker, more reliable crash detection than

AFL's baseline and other AFL-based methods.

Böttinger et al. [60] showed that viewing fuzz testing as a

feedback-driven learning process enhances input generation

quality. Using Markov Decision Process theory, they recast

fuzz testing as a reinforcement learning challenge and

developed a method based on deep Q-learning. This method

effectively learns to select high-reward fuzzing operations.

Their experiments confirmed the algorithm's ability to

optimize new input generation based on ongoing feedback.

Addressing inefficient fuzz testing from random test case

mutations, Zhang et al. [61] used a Markov Decision Process

to describe traditional fuzz testing and implemented the Deep

Deterministic Policy Gradient (DDPG) algorithm. This

approach selects high-reward mutations for program inputs,

creating the reinforcement learning-based fuzzing system

RLFUZZ. RLFUZZ uses a reinforcement learning algorithm

to choose actions that maximize rewards, guiding sample

mutations. Tested with various warm-up steps and activation

functions, RLFUZZ showed substantial edge coverage

improvements compared to baseline mutations and DQN

algorithms.

Sun et al. [62] introduced a VAE-GAN model that combines

the strengths of Variational Autoencoders and Generative

Adversarial Networks, using mean feature matching to

quicken convergence and enhance test case variety. The

VAE-GAN model outperformed traditional GANs,

increasing code coverage by 11.87% and more effectively

revealing unique crashes and hang-ups.

Lee et al. [63] developed SEAMFUZZ, a fuzz testing method

that tailors mutation strategies to seed inputs based on their

syntactic and semantic characteristics, to employ a

Thompson sampling algorithm to refine test case precision.

SEAMFUZZ demonstrated greater effectiveness in path

exploration and bug detection than other advanced fuzzing

tools.

Shao et al. [64] proposed an optimized seed mutation method

for AFL that reduces redundant mutations by pinpointing

effective bytes in seeds and using reinforcement learning to

guide more impactful test case generation, yielding

significant enhancements over traditional random mutations.

4.3. Using Learning Based Models for Target Program

Analysis

Beyond using machine learning to refine seed inputs and

mutation strategies, scholars have leveraged these models to

predict execution paths and analyze program behavior,

thereby improving fuzz testing.

She et al. [65] note that treating fuzz testing as a machine

learning task is common, yet smooth program execution paths

are vital for effective gradient-based searches. They

developed NEUZZ, a smoothing technique using a neural

network to approximate control flows and calculate gradients,

to guide input mutations to increase fault detection. This

neural-guided fuzz testing method has significantly enhanced

testing efficiency.

Cheng et al. [66] propose a machine learning framework to

mitigate traditional fuzz testing tools' reliance on predefined

seed inputs for defect detection. The framework leverages

neural networks to correlate input data with program

execution paths, producing seed inputs that access unexplored

code paths. This method not only improves code coverage but

also enhances fuzz testing's effectiveness and efficiency by

integrating with modern fuzzing mutation strategies.

Experiments confirm its ability to boost code coverage and

detect potential crashes.

Zong et al. [67] introduce FuzzGuard, a deep learning method

addressing inefficiencies in directed grey-box fuzz testing,

characterized by inputs failing to reach target code segments.

FuzzGuard predicts whether inputs will hit the target area,

filtering out ineffective ones and enhancing test performance.

The team also devises solutions for data imbalance and time

constraints, with results showing FuzzGuard can increase

testing speed and save up to 88% of testing time. Liang and

Xiao [68] developed RLF, a deep reinforcement learning-

based algorithm for targeted fuzzing. RLF selects test samples

by instrumenting programs and assessing distances between

execution paths and targets. Using deep Q-Learning, RLF

refines its strategy, making test selection deliberate and

targeted, thus improving test case quality and targeted fuzz

testing's efficiency.

Li et al. [69] investigated machine learning applications in

fuzz testing, addressing hash collisions and using edge

knowledge. They created SpeedNeuzz, which uses advanced

hash techniques and neural networks for simulating program

behavior. SpeedNeuzz improves mutation strategies with

gradient-based methods, enhancing edge coverage more than

NEUZZ.

Jeon and Moon [70] developed an algorithm to boost hybrid

fuzz testing with deep reinforcement learning, creating Dr.

PathFinder. This tool uses symbolic execution for test case

generation and diverges from standard concolic execution by

adaptively choosing paths. Its reinforcement learning-driven

approach focuses on deeper paths, reducing ineffective test

cases and memory usage, and controlling state space

explosion. Dr. PathFinder matches or exceeds other bug

fuzzers in finding deep-seated errors.

Li et al. [71] introduced V-Fuzz, an evolutionary fuzzing

framework for detecting vulnerabilities. Combining a graph

neural network-based prediction model with an evolution-

inspired fuzzer, V-Fuzz targets and triggers vulnerabilities

more effectively. Its tests confirm rapid error detection and

have uncovered multiple security flaws, including three

previously unknown vulnerabilities.

154

4.4. Using Learning Based Models for Test Results

Evaluation

Beyond enhancing seed scheduling, test case mutation, and

target program analysis with machine learning, researchers

have optimized fuzz testing phases. They use machine

learning or deep learning to evaluate evolutionary algorithm-

based fuzzing outcomes, aiming to detect exceptions and

improve vulnerability detection.

Ming et al. [72], following a fuzz testing campaign on

Intelligent Transportation Systems (ITS), leveraged machine

learning to analyze the harvested request and response

messages. This analysis facilitated the automatic

identification of protocol vulnerabilities and related

anomalies within the ITS, enhancing the efficacy and

efficiency of fuzz testing analysis.

Fuzz testing effectively uncovers memory corruption

vulnerabilities, yet not all anomalies signify exploitable

flaws. The intensive analysis of widespread crash data poses

a major challenge to timely vulnerability discovery. To boost

efficiency, researchers have turned to machine learning for

parsing test characteristics, enabling the automatic

identification of critical crashes and evaluation of their

exploitability. For example, Tripathi et al. [73] have crafted a

robust crash identification model using hardware-monitored

runtime data and SVM analysis of core dumps.

Simultaneously, Zhang and Thing [74] have expedited

vulnerability detection by employing online classifiers to

prioritize crashes, streamlining the identification and

remediation of pressing vulnerabilities. These advances

refine the vulnerability mining process, focusing efforts on

severe crashes and hastening critical flaw resolution.

Some studies have integrated machine learning with fuzz

testing to create methodologies that enhance vulnerability

detection. This includes analyzing software exploitability and

using code generation techniques. By integrating these

methods, researchers gain a deeper understanding of fuzz

testing outputs, improving vulnerability discovery. Such

comprehensive approaches not only identify anomalies but

also analyze and support the remediation of potential

vulnerabilities. Yan et al. [75] combined machine learning

with fuzz testing for software measurement, using Bayesian

algorithms and dynamic fuzz testing to refine predictions of

software exploitability, thereby establishing a precise

framework for its quantification. You et al. [76] utilized NLP

for information extraction and semantic fuzz testing to extract

vulnerability insights from sources like CVE reports and

Linux git logs, facilitating a better understanding of

vulnerabilities and guiding the automatic generation of Proof

of Concept (PoC), thus making vulnerability mining more

thorough and efficient.

5. RESEARCH ISSUES

Comparative assessment is vital for learning-based fuzz

testing frameworks. This section compares datasets,

framework features, and additional information in fuzz

testing. It elucidates dataset attributes and their use in

learning-based fuzz testing. Finally, the section addresses

potential challenges and opportunities in this field.

5.1. Dataset

Datasets employed in learning-based fuzz testing frameworks

encompass several varieties, as illustrated in Table 2.

� Crafted by Columbia University's scholars, the LAVA-M

[77] dataset, standing for Large Scale Automated

Vulnerability Addition, is designed to facilitate fuzz

testing and vulnerability discovery for researchers. This

collection boasts a vast array of machine-crafted samples

that illustrate diverse vulnerability types, including buffer

overflows, format string weaknesses, and integer

overflows.

� The Peach Fuzzer [25] is a fuzz testing platform that

uncovers flaws in software and protocols. It offers a

flexible framework for creating varied fuzzing inputs for

files, networks, and APIs. Its customization options allow

for detailed test scenarios, and it integrates easily with

automated testing systems.

� The GNU binutils [78] are a collection of tools for

creating, handling, and altering binary object files,

essential in software development for transforming

source code into executables and for their subsequent

manipulation and debugging. Commonly paired with the

GCC (GNU Compiler Collection), these utilities facilitate

the compilation and linking of C and C++ programs.

� The AFL [26] (American Fuzzy Lop) is a fuzzing tool

focused on increasing the efficiency of vulnerability

detection in software. It employs a dynamic feedback

mechanism to autonomously generate and execute test

cases, pinpointing potential software vulnerabilities.

� The CGC [79] (Cyber Grand Challenge), orchestrated by

DARPA, is an international cybersecurity competition

promoting the advancement of automated defense

systems. The challenge seeks to fortify digital security

measures against escalating cyber threats by catalyzing

the development and application of automated systems in

cybersecurity.

� The CB-multios [80] is a fuzzing framework designed to

enhance operating system diversity. It employs advanced

fuzzing techniques, integrating symbolic execution and

coverage-guided test generation with mutation strategies,

to reinforce the integrity of OS interfaces and syscalls.

The platform enables researchers to devise and

implement tailored fuzzing tests, using its custom

mutation engine to explore various input combinations

and address potential vulnerabilities.

� Developed and maintained by Google, the Fuzzy Test

Suite [81] is a suite of tools for fuzz testing that aids in

detecting and fixing security vulnerabilities and bugs in

software systems. It includes a range of utilities and

techniques for crafting and running fuzz tests.

155

Table 2. Common datasets in learning-based fuzzing

Dataset Name Brief Description Papers Using the dataset

LAVA-M a dataset formed by inserting bugs into programs by LAVA [54,59,61,65,68,71]

Peach Fuzzer A tool for generating diverse types of fuzzing inputs [25,56,59,63,64,68]

GNU binutils GNU's binary toolset [27,28,28,30,31,54,62,63,65,69]

AFL
A Fuzzing tool including sample files for generating

fuzzing inputs
[54,55,56,60,67,68]

Cyber Grand Challenge Global cybersecurity race [55,59]

CB-multios CGC binary file [70]

Google Fuzzy Test Suite A collection of tools for conducting fuzzing [11,55]

5.2. Learning Based Fuzz Testing Framework

To ensure a comprehensive survey, this article compiles a

decade's fuzzy testing papers, chronologically presented in

Figure 2. The trend shows an increasing publication volume,

with a surge in learning-based fuzzy testing research since

2016, indicating a growing interest in applying learning

methodologies to fuzzy testing.

Figure 2. Papers on Fuzz Testing from 2013 to 2023

The efficiency of fuzz testing is primarily contingent upon

factors such as the quality of initial seeds, seed selection and

scheduling techniques, and case mutation strategies. Hence, a

multitude of studies have integrated learning-based methods

into these aspects, yielding an array of sophisticated learning-

based fuzz testing frameworks, cataloged in Table 3. This

paper segments these frameworks into four categories, each

corresponding to the frameworks that utilize learning-based

models to enhance the fuzz testing cycle, as discussed in the

previous section.

The initial category involves frameworks that enhance seed

scheduling with learning-based models, notably SampleFuzz

and GAN-AFL. The core process, illustrated in Figure 3,

involves the following key steps:

� Data Collection: Compile data on seed performance and

test outcomes.

� Feature Extraction: Derive key attributes from seeds and

their executions, such as input size, execution trajectory,

code coverage, and time spent.

� Model Training: Train deep learning models using the

gathered data and identified features.

� Seed Assessment: Evaluate seeds with the aid of the

trained models.

� Adaptive Scheduling: Dynamically prioritize seeds based

on model assessments to refine the test progression.

g y g

0

50

100

150

200

250

300

350

400

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Number of Publications

fuzz testing learning based fuzz testing Publication Trends

156

This methodology provides a more adaptive alternative to

static rules, continuously learning from new test feedback to

optimize its scheduling algorithms.

Target Program

Generate path
Path Corpus

Generate seed

input Seed Corpus

New Seed

InputReward

Learning-based

Model

Figure 3. Generating new fuzzing seeds using learning-based

framework

The second category employs learning-based methods like the

RLFUZZ and VecSeeds models to refine test case mutation

strategies, often through reinforcement learning, as illustrated

in Figure 4.

Target Program

Select mutation

operation
Reward

Evaluation and

screening

Learning-based

Model

Figure 4. The architecture of testcase mutation using

learning-based model

Test case mutation involves altering test inputs to reveal

software defects. Machine learning optimization enhances

bug detection efficiency and reduces testing costs. For

example, models learn optimal mutations through trial and

error, adjusting strategies based on feedback regarding

whether new code paths or crashes were triggered. Clustering

algorithms also group test cases to prioritize mutating those

more likely to expose vulnerabilities, offering more targeted

and adaptable mutations than traditional methods.

The third category adopts learning-based methods for direct

analysis of the target software, exemplified by the

SpeedNeuzz and V-Fuzz models which leverage machine

learning to predict execution paths and behavior, guiding test

case mutation and generation to improve fuzz testing results.

The process, illustrated in Figure 5, starts with data collection

from the target program, including inputs, responses,

exceptions, system calls, and performance metrics. This is

followed by feature selection—determining which data

components are valuable for predicting vulnerabilities. With

chosen features and collected data, a model is trained to

produce new test cases, enhancing the probability of

detecting unknown program errors or vulnerabilities.

Target Program Testcase

Path prediction

evaluative

analysis

Learning-based

Model

Figure 5. The framework of analyzing the diagram of the

target program using learning-based model

The fourth category uses machine or deep learning to refine

fuzz test analyses, detect anomalies and uncover

vulnerabilities. The process begins with training the model on

fuzzing results, including crash reports, exception logs,

memory leaks, and code coverage. The model is then

evaluated on a separate test set, and finally applied to new

fuzz test data to identify potential security flaws and their

origins.

This article reviews the evolution of learning-driven fuzz

testing over the past decade, highlighting frameworks that

incorporate learning to enhance fuzz testing. Representative

frameworks and their succinct synopses are delineated in

Table 3. This paper catalogs the characteristics, mechanisms,

datasets, and learning models, emphasizing the last five years'

technological strides due to machine learning and the demand

for software security. Comparing different frameworks

remains difficult without unified performance standards.

157

Table 3. Learning-based fuzzing framework and functionality

Model Name Brief Description Learning Model Paper

SampleFuzz
Using a learned input probability distribution to intelligently guide where

to fuzz inputs
RNN [57]

GAN-AFL
Using GAN models to reinitialize AFL system with novel seed files to

improve its performance
GAN [58]

RLFUZZ Using reinforcement learning algorithm to guide testcase variation Markov chain, DDPG [61]

VecSeeds Provide inputs conforming to the input format for programs tested GAN [62]

SEAMFUZZ
Automatically capturing features of individual seed inputs and applying

different mutation strategies to distinct seed inputs
MAB, TS [63]

RLFuzz-IF Training the mutator's behavior on test cases to optimize mutations DQL [64]

NEUZZ
Approximating and smoothing the branch behavior of the program to
enhance the efficiency of fuzzing

FNN [65]

FuzzGuard
Predicting the reachability of inputs before executing the target program,
filtering out unreachable inputs to enhance the performance of fuzzing

CNN [67]

RLF
Calculating the distance between execution paths and the target, guiding

the selection of test samples
DQL [68]

SpeedNeuzz
Reducing the randomness in test case mutations to generate high-quality

inputs
DNN [69]

Dr.PathFinder
Allowing efficient memory usage and alleviating the state explosion

problem
RNN, DQL [70]

V-Fuzz
Efficiently and rapidly discovering errors in binary programs within a
limited time

GEN [71]

5.3. Challenges And Opportunities

Machine learning and deep learning drive innovations in

cybersecurity fuzzing, presenting a critical topic for

discussion. The variety in software complicates vulnerability

detection, especially in large systems with novel weaknesses.

Challenges persist:

� Diverse data types, from integers to images, require

models to adapt to dynamic software inputs, which may

shift in type or format during operation.

� Models must discern complex vulnerability patterns

across multiple points and layers, demanding incremental

or online training to stay effective against emerging

threats.

� The efficacy of machine learning in fuzz testing hinges

on the quality and quantity of training data, often scarce

in specialized domains. Manual data collection is

laborious, and dataset quality crucially influences model

training and generalization. Ideal datasets must be

unbiased, with a balanced mix of positive and negative

samples.

In grey-box or white-box fuzzing, limited program analysis

restricts feature extraction and utilization. Future models

should leverage advanced capabilities to extract and use

program features more accurately and holistically, including

semantic information. These improvements will enhance the

precision and effectiveness of vulnerability detection, thus

strengthening software security.

6. CONCLUSION

Fuzz testing, a key vulnerability detection method, has gained

attention for its automation and scalability. The integration of

machine learning has invigorated this field, bolstering

efficiency and precision in identifying vulnerabilities. These

technologies enable models to generate targeted test cases,

increasing the likelihood of exposing vulnerabilities and

adapting to evolving threats.

The paper examines the growth of learning-based fuzz testing.

It starts with an introduction to fuzz testing and traditional

methods, then explores learning-based enhancements at

various stages, including test case development and result

analysis. It underscores learning-based methods' role in

refining vulnerability detection. The conclusion calls for

continued research in this area to further advance security

assessments and devise sophisticated solutions for emerging

security challenges.

REFERENCES

[1] Vilela, P., Machado, M. and Wong, W.E., 2002. Testing

for security vulnerabilities in software. Software

Engineering and Applications.

[2] Wei W. Billions of Android Devices Vulnerable to

Privilege Escalation Except Android 5.0 Lollipop, 2014

[Online]. Available: http://thehackernews.com/2014/

11/ billions-of-android-devices-vulnerable.html

[3] Autili, M., Malavolta, I., Perucci, A., Scoccia, G.L. and

Verdecchia, R., 2021. Software engineering techniques

for statically analyzing mobile apps: research trends,

characteristics, and potential for industrial adoption.

158

Journal of Internet Services and Applications, 12, pp.1-

60.

[4] Huang, L. and Song, Y.T., 2008, December. A dynamic

impact analysis approach for object-oriented programs.

In 2008 Advanced Software Engineering and Its

Applications (pp. 217-220). IEEE.

[5] Min, Z. and Min, F., 2014, June. Automated test

generation on path-based symbolic execution. In 2014

IEEE 5th International Conference on Software

Engineering and Service Science (pp. 845-848). IEEE.

[6] Gaston, C., Aiguier, M., Bahrami, D. and Lapitre, A.,

2009, September. Symbolic execution techniques

extended to systems. In 2009 Fourth International

Conference on Software Engineering Advances (pp. 78-

85). IEEE.

[7] Petsios, T., Zhao, J., Keromytis, A.D. and Jana, S., 2017,

October. Slowfuzz: Automated domain-independent

detection of algorithmic complexity vulnerabilities. In

Proceedings of the 2017 ACM SIGSAC conference on

computer and communications security (pp. 2155-2168).

[8] Sutton, M., Greene, A. and Amini, P., 2007. Fuzzing:

brute force vulnerability discovery. Pearson Education.

[9] Gupta, M.J. and Sehgal, P., 2024. Optimizing Credit

Card Fraud Detection: Classifier Performance and

Feature Selection Empowered by Grasshopper

Algorithm. International Journal of Performability

Engineering, 20(3), pp. 177-185.

[10] Bhandari, R., Singla, S., Sharma, P. and Kang, S.S.,

2024. AINIS: An Intelligent Network Intrusion System.

International Journal of Performability Engineering,

20(1), pp. 24-31.

[11] Herrera, A., Gunadi, H., Hayes, L., Magrath, S.,

Friedlander, F., Sebastian, M., Norrish, M. and Hosking,

A.L., 2019. Corpus distillation for effective fuzzing: A

comparative evaluation. arxiv preprint

arxiv:1905.13055.

[12] Zheng, Y., Wen, H., Cheng, K., Song, Z.W., Zhu, H.S.

and Sun, L.M., 2019. A survey of IoT device

vulnerability mining techniques. Journal of Cyber

Security, 4(5), pp.61-75.

[13] Zhou, W., Jia, Y., Peng, A., Zhang, Y. and Liu, P., 2018.

The effect of IoT new features on security and privacy:

New threats, existing solutions, and challenges yet to be

solved. IEEE Internet of things Journal, 6(2), pp.1606-

1616.

[14] Miller, B.P., Fredriksen, L. and So, B., 1990. An

empirical study of the reliability of UNIX utilities.

Communications of the ACM, 33(12), pp.32-44.

[15] Böttinger, K., 2017, May. Guiding a colony of black-box

fuzzers with chemotaxis. In 2017 IEEE Security and

Privacy Workshops (SPW) (pp. 11-16). IEEE.

[16] Woo, M., Cha, S.K., Gottlieb, S. and Brumley, D., 2013,

November. Scheduling black-box mutational fuzzing. In

Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security (pp. 511-522).

[17] Aitel, D. An introduction to SPIKE, the fuzzer creation

kit. in Proc. Black Hat USA, 2002. [Online]. Available:

https://www.blackhat.com/presentations/bh-usa-02/bh-

us-02-aitel-spike.ppt

[18] Zhao, L., Duan, Y. and XUAN, J., 2019. Send hardest

problems my way: Probabilistic path prioritization for

hybrid fuzzing. Network and Distributed System

Security Symposium (NDSS).

[19] Cadar, C., Dunbar, D. and Engler, D.R., 2008,

December. Klee: unassisted and automatic generation of

high-coverage tests for complex systems programs. In

OSDI (Vol. 8, pp. 209-224).

[20] Godefroid, P., Levin, M.Y. and Molnar, D.A., 2008,

February. Automated whitebox fuzz testing. In NDSS

(Vol. 8, pp. 151-166).

[21] Ganesh, V., Leek, T. and Rinard, M., 2009, May. Taint-

based directed whitebox fuzzing. In 2009 IEEE 31st

International Conference on Software Engineering (pp.

474-484). IEEE.

[22] Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X. and

Liu, Y., 2018, October. Hawkeye: Towards a desired

directed grey-box fuzzer. In Proceedings of the 2018

ACM SIGSAC conference on computer and

communications security (pp. 2095-2108).

[23] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C.

and Bos, H., 2017, February. VUzzer: Application-

aware Evolutionary Fuzzing. In NDSS (Vol. 17, pp. 1-

14).

[24] Lemieux, C. and Sen, K., 2018, September. Fairfuzz: A

targeted mutation strategy for increasing greybox fuzz

testing coverage. In Proceedings of the 33rd ACM/IEEE

international conference on automated software

engineering (pp. 475-485).

[25] Eddington, M., 2011. Peach fuzzing platform. Peach

Fuzzer, 34, pp.32-43.

[26] Zalewski, M., 2017. American fuzzy lop.

[27] Böhme, M., Pham, V.T., Nguyen, M.D. and

Roychoudhury, A., 2017, October. Directed greybox

fuzzing. In Proceedings of the 2017 ACM SIGSAC

conference on computer and communications security

(pp. 2329-2344).

[28] Yue, T., Wang, P., Tang, Y., Wang, E., Yu, B., Lu, K.

and Zhou, X., 2020. {EcoFuzz}: Adaptive {Energy-

Saving} greybox fuzzing as a variant of the adversarial

{Multi-Armed} bandit. In 29th USENIX Security

Symposium (USENIX Security 20) (pp. 2307-2324).

[29] Böhme, M., Pham, V.T. and Roychoudhury, A., 2016,

October. Coverage-based greybox fuzzing as markov

chain. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security

(pp. 1032-1043).

[30] Lemieux, C. and Sen, K., 2017. Fairfuzz: Targeting rare

branches to rapidly increase greybox fuzz testing

coverage. arxiv preprint arxiv:1709.07101.

[31] Chen, K., Zhang, Y. and Liu, P., 2016. Dynamically

discovering likely memory layout to perform accurate

fuzzing. IEEE Transactions on Reliability, 65(3),

159

pp.1180-1194.

[32] Vinesh, N. and Sethumadhavan, M., 2020. Confuzz—a

concurrency fuzzer. In First International Conference on

Sustainable Technologies for Computational

Intelligence: Proceedings of ICTSCI 2019 (pp. 667-

691). Springer Singapore.

[33] Padhye, R., Lemieux, C. and Sen, K., 2019, July. Jqf:

Coverage-guided property-based testing in java. In

Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis (pp. 398-

401).

[34] Chen, Y., Li, P., Xu, J., Guo, S., Zhou, R., Zhang, Y.,

Wei, T. and Lu, L., 2020, May. Savior: Towards bug-

driven hybrid testing. In 2020 IEEE Symposium on

Security and Privacy (SP) (pp. 1580-1596). IEEE.

[35] Wang, Y., Jia, X., Liu, Y., Zeng, K., Bao, T., Wu, D. and

Su, P., 2020, February. Not All Coverage Measurements

Are Equal: Fuzzing by Coverage Accounting for Input

Prioritization. In NDSS.

[36] Ohe, H. and Chang, B.M., 2005. An exception

monitoring system for java. In Rapid Integration of

Software Engineering Techniques: First International

Workshop, RISE 2004, Luxembourg-Kirchberg,

Luxembourg, November 26, 2004. Revised Selected

Papers 1 (pp. 71-81). Springer Berlin Heidelberg.

[37] Abrantes, J., Coelho, R. and Bonifácio, R., 2015. DAEH:

A Tool for Specifying and Monitoring the Exception

Handling Policy. International Journal of Software

Engineering and Knowledge Engineering, 25(09n10),

pp.1515-1530.

[38] Serebryany, K., 2015. libfuzzer–a library for coverage-

guided fuzz testing. LLVM project, p.34.

[39] Takanen, A., Demott, J.D., Miller, C. and Kettunen, A.,

2018. Fuzzing for software security testing and quality

assurance. Artech House.

[40] Wang, Y., Jia, P., Liu, L., Huang, C. and Liu, Z., 2020.

A systematic review of fuzzing based on machine

learning techniques. PloS one, 15(8), p.e0237749.

[41] Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z. and

Chen, Z., 2018, May. Collafl: Path sensitive fuzzing. In

2018 IEEE Symposium on Security and Privacy (SP)

(pp. 679-696). IEEE.

[42] Nguyen, T.D., Pham, L.H., Sun, J., Lin, Y. and Minh,

Q.T., 2020, June. sfuzz: An efficient adaptive fuzzer for

solidity smart contracts. In Proceedings of the

ACM/IEEE 42nd International Conference on Software

Engineering (pp. 778-788).

[43] Samuel, A.L., 2000. Some studies in machine learning

using the game of checkers. IBM Journal of research and

development, 44(1.2), pp.206-226.

[44] Cox, D.R., 1958. The regression analysis of binary

sequences. Journal of the Royal Statistical Society Series

B: Statistical Methodology, 20(2), pp.215-232.

[45] Cover, T. and Hart, P., 1967. Nearest neighbor pattern

classification. IEEE transactions on information theory,

13(1), pp.21-27.

[46] MacQueen, J., 1967, June. Some methods for

classification and analysis of multivariate observations.

In Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability (Vol. 1, No. 14,

pp. 281-297).

[47] Shi, J. and Malik, J., 2000. Normalized cuts and image

segmentation. IEEE Transactions on pattern analysis and

machine intelligence, 22(8), pp.888-905.

[48] Radosavljevic, A. and Anderson, R.P., 2014. Making

better Maxent models of species distributions:

complexity, overfitting and evaluation. Journal of

biogeography, 41(4), pp.629-643.

[49] Sheela, K.G. and Deepa, S.N., 2013. Review on methods

to fix number of hidden neurons in neural networks.

Mathematical problems in engineering, 2013.

[50] Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing

the dimensionality of data with neural networks. science,

313(5786), pp.504-507.

[51] Nair, V. and Hinton, G.E., 2010. Rectified linear units

improve restricted boltzmann machines. In Proceedings

of the 27th international conference on machine learning

(ICML-10) (pp. 807-814).

[52] Ito, Y., 1991. Representation of functions by

superpositions of a step or sigmoid function and their

applications to neural network theory. Neural Networks,

4(3), pp.385-394.

[53] Fan, E., 2000. Extended tanh-function method and its

applications to nonlinear equations. Physics Letters A,

277(4-5), pp.212-218.

[54] Choi, G., Jeon, S., Cho, J. and Moon, J., 2023. A Seed

Scheduling Method With a Reinforcement Learning for

a Coverage Guided Fuzzing. IEEE Access, 11, pp.2048-

2057.

[55] Wang, J., Song, C. and Yin, H., 2021. Reinforcement

learning-based hierarchical seed scheduling for greybox

fuzzing.

[56] Li, Z.T., Cheng L. and Zhang Y. Seed Generation for

Fuzzing Based on Deep Learning, Computer Systems

Applications,2019,28(4):9–17.

[57] Godefroid, P., Peleg, H. and Singh, R., 2017, October.

Learn&fuzz: Machine learning for input fuzzing. In 2017

32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE) (pp. 50-59).

IEEE.

[58] Nichols, N., Raugas, M., Jasper, R. and Hilliard, N.,

2017. Faster fuzzing: Reinitialization with deep neural

models. arxiv preprint arxiv:1711.02807.

[59] Karamcheti, S., Mann, G. and Rosenberg, D., 2018,

January. Adaptive grey-box fuzz-testing with thompson

sampling. In Proceedings of the 11th ACM Workshop on

Artificial Intelligence and Security (pp. 37-47).

[60] Böttinger, K., Godefroid, P. and Singh, R., 2018, May.

Deep reinforcement fuzzing. In 2018 IEEE Security and

Privacy Workshops (SPW) (pp. 116-122). IEEE.

[61] Zhang, Z., Cui, B. and Chen, C., 2021. Reinforcement

learning-based fuzzing technology. In Innovative

160

Mobile and Internet Services in Ubiquitous Computing:

Proceedings of the 14th International Conference on

Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS-2020) (pp. 244-253). Springer

International Publishing.

[62] Sun, X., Wang, W., Liu, X., Fan, J., Li, Z., Song, Y. and

Qin, Z., 2022, December. VecSeeds: Generate fuzzing

testcases from latent vectors based on VAE-GAN. In

2022 IEEE International Conference on Trust, Security

and Privacy in Computing and Communications

(TrustCom) (pp. 953-958). IEEE.

[63] Lee, M., Cha, S. and Oh, H., 2023, May. Learning seed-

adaptive mutation strategies for greybox fuzzing. In

2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE) (pp. 384-396). IEEE.

[64] Shao, J., Zhou, Y., Liu, G. and Zheng, D., 2023, May.

Optimized Mutation of Grey-box Fuzzing: A Deep RL-

based Approach. In 2023 IEEE 12th Data Driven Control

and Learning Systems Conference (DDCLS) (pp. 1296-

1300). IEEE.

[65] She, D., Pei, K., Epstein, D., Yang, J., Ray, B. and Jana,

S., 2019, May. Neuzz: Efficient fuzzing with neural

program smoothing. In 2019 IEEE Symposium on

Security and Privacy (SP) (pp. 803-817). IEEE.

[66] Cheng, L., Zhang, Y., Zhang, Y., Wu, C., Li, Z., Fu, Y.

and Li, H., 2019, May. Optimizing seed inputs in fuzzing

with machine learning. In 2019 IEEE/ACM 41st

International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion) (pp. 244-

245). IEEE.

[67] Zong, P., Lv, T., Wang, D., Deng, Z., Liang, R. and

Chen, K., 2020. FuzzGuard: Filtering out unreachable

inputs in directed grey-box fuzzing through deep

learning. In 29th USENIX security symposium

(USENIX security 20) (pp. 2255-2269).

[68] Liang, X. and Xiao, T., 2022, October. Rlf: Directed

fuzzing based on deep reinforcement learning. In 2022

International Conference on Machine Learning, Control,

and Robotics (MLCR) (pp. 127-133). IEEE.

[69] Li, Y., Xiao, X., Zhu, X., Chen, X., Wen, S. and Zhang,

B., 2020, December. Speedneuzz: Speed up neural

program approximation with neighbor edge knowledge.

In 2020 IEEE 19th International Conference on Trust,

Security and Privacy in Computing and

Communications (TrustCom) (pp. 450-457). IEEE.

[70] Jeon, S. and Moon, J., 2022. Dr. PathFinder: hybrid

fuzzing with deep reinforcement concolic execution

toward deeper path-first search. Neural Computing and

Applications, 34(13), pp.10731-10750.

[71] Li, Y., Ji, S., Lyu, C., Chen, Y., Chen, J., Gu, Q., Wu, C.

and Beyah, R., 2020. V-fuzz: Vulnerability prediction-

assisted evolutionary fuzzing for binary programs. IEEE

transactions on cybernetics, 52(5), pp.3745-3756.

[72] Ming, L., Zhao, G., Huang, M., Pang, L., Li, J., Zhang,

J., Li, D. and Lu, S., 2018, June. Remote Protocol

Vulnerability Discovery for Intelligent Transportation

Systems (ITS). In 2018 IEEE Third International

Conference on Data Science in Cyberspace (DSC) (pp.

923-929). IEEE.

[73] Tripathi, S., Grieco, G. and Rawat, S., 2017, December.

Exniffer: Learning to prioritize crashes by assessing the

exploitability from memory dump. In 2017 24th Asia-

Pacific Software Engineering Conference (APSEC) (pp.

239-248). IEEE.

[74] Zhang, L. and Thing, V.L., 2018, October. Assisting

vulnerability detection by prioritizing crashes with

incremental learning. In TENCON 2018-2018 IEEE

Region 10 Conference (pp. 2080-2085). IEEE.

[75] Yan, G., Lu, J., Shu, Z. and Kucuk, Y., 2017, August.

Exploitmeter: Combining fuzzing with machine learning

for automated evaluation of software exploitability. In

2017 IEEE Symposium on Privacy-Aware Computing

(PAC) (pp. 164-175). IEEE.

[76] You, W., Zong, P., Chen, K., Wang, X., Liao, X., Bian,

P. and Liang, B., 2017, October. Semfuzz: Semantics-

based automatic generation of proof-of-concept exploits.

In Proceedings of the 2017 ACM SIGSAC conference

on computer and communications security (pp. 2139-

2154).

[77] Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T.,

Mambretti, A., Robertson, W., Ulrich, F. and Whelan,

R., 2016, May. Lava: Large-scale automated

vulnerability addition. In 2016 IEEE symposium on

security and privacy (SP) (pp. 110-121). IEEE.

[78] Pesch, R.H. and Osier, J.M., 1993. The GNU binary

utilities. Free Software Foundation.

[79] Song, J. and Alves-Foss, J., 2015. The darpa cyber grand

challenge: A competitor's perspective. IEEE Security &

Privacy, 13(6), pp.72-76.

[80] Github repository cb-multios, 2018, [online] Available:

https://github.com/trailofbits/cb-multios.

[81] Waymark, C., Walker, K.A., Boone, C.D. and Bernath,

P.F., 2013. ACE-FTS version 3.0 data set: validation and

data processing update. Annals of Geophysics, 56.

161

