
A Survey on Test Input Selection and Prioritization for Deep Neural Networks

Shengrong Wang1, Dongcheng Li2,*, Hui Li1, Man Zhao1, and W. Eric Wong3
1School of Computer Science, China University of Geosciences, Wuhan, China

2 Department of Computer Science, California State Polytechnic University - Humboldt, Arcata, USA
3Department of Computer Science, University of Texas at Dallas, Richardson, USA

wsr@cug.edu.cn, dl313@humboldt.edu, huili@vip.sina.com, zhaoman@cug.edu.cn, ewong@utdallas.edu

*corresponding author

Abstract—With the breakthrough advancements of deep

neural network technology in applications such as image

processing, autonomous driving, and speech recognition, the

testing of deep neural network models becomes crucial to

ensure their performance and reliability. The selection of test

inputs is a critical step in the testing process. Prioritizing test

inputs and selecting the most impactful ones can help

improve testing efficiency to identify potential problems and

deficiencies in the model as early as possible, given the large

size of the test dataset and the high cost of annotation. In

order to gain a deeper understanding of the research progress

in the field of test input selection for deep neural networks,

this paper conducts a survey of academic papers in the field

over the past years. A systematic review of existing research

outcomes is presented, focusing on the criteria, methods, and

priority ranking for the selection of test inputs in deep neural

networks. Additionally, the paper offers insights into future

challenges for test input selection in deep neural networks.

Keywords-deep neural networks testing; test inputs; test
input selection; selection criteria; test input prioritization

1. INTRODUCTION

Deep neural networks (DNNs) , commonly employed models

in deep learning systems, have played a crucial role in

numerous application domains [1][2], including facial

recognition [3], autonomous driving [4], image processing

[5], and software engineering [6][7][8][9]. Despite the great

success of Deep Neural Network (DNN) models in many

application areas, existing research indicates that DNN

models still exhibit numerous potential issues. These issues

often lead to unpredictable errors in deep learning systems.

Therefore, detecting erroneous behavior in Deep Neural

Networks and evaluating model performance have become

major bottlenecks in the development of deep neural network

models. Researchers have proposed many testing techniques

[10][11][12][13][14][15][16][17][18][19] to address this

challenge.

There are many key differences between deep neural networks

and traditional software. Traditional software is typically

designed and coded based on explicitly defined rules and

logic, allowing developers to understand the program's

behavior by tracing the execution paths of the code. In

contrast, deep neural networks are trained on large-scale

datasets, and their behavior is influenced by the training data.

The internal workings of deep neural networks are often

challenging to interpret. Therefore, testing deep neural

networks is often regarded as black-box testing, involving

considerations of data diversity, model robustness, and

interpretability as specific challenges. Developers frequently

utilize extensive datasets to retrain DNN models, correcting

their incorrect behavior and improving overall performance.

Testing deep neural networks is an effective method for

ensuring their quality [20]. However, due to the variety and

size of test inputs, as well as the high cost of labeling test

inputs, the testing process still has serious efficiency issues. It

took more than 49,000 people and 9 years to label the

ImageNet [21] dataset containing millions of images.

Therefore, in situations with limited annotation budgets,

identifying and selecting the most representative and

meaningful test inputs from large-scale unlabeled datasets is

crucial for enhancing the effectiveness and testing efficiency

of deep neural network models [22].

To gain insights into the issues of DNN test input selection

and prioritization, this study compiles relevant papers in this

domain from 2016 to 2023 for review and analysis. The paper

search primarily utilized keywords such as 'Deep Neural

Networks Testing,' 'Test Input Selection,' 'Test Input

Prioritization,' and 'Test Input Metrics.' Influential search

engines including Google Scholar, Web of Science, Ei

Village, CNKI, and others; both domestic and international

were employed for retrieval. By briefly reviewing the titles

and abstracts of the papers, an initial screening was conducted

based on predetermined criteria to eliminate papers irrelevant

to the research question. Subsequently, an in-depth

investigation into associated works, citations, and references

in papers identified as highly pertinent was carried out to

acquire additional literature with higher relevance. This study

ultimately identified 85 papers relevant to the research

question. Figure 1 provides a statistical overview of the

publication distribution of these papers across different years.

This study consolidates recent research findings in the field of

test input selection and prioritization and classifies and

summarizes their main ideas and research approaches. The

article also identifies the challenges and problems faced in this

research area of test input selection. The remainder of this

article is organized in the following manner: Section 2

describes the criteria for test input selection; Section 3 briefly

discusses two existing test input selection methods; Section 4

organizes the various approaches to test input prioritization;

232

2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR)

2835-2823/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSSR61934.2024.00035

Section 5 discusses the current challenges of the technique;

finally, Section 6 and Section 7 present the threats and

conclusions of this study, respectively.

Figure 1. The publication distribution of the literature across

different years

2. CRITERIA FOR TEST INPUT SELECTION

In the testing of deep neural networks, the criteria for selecting

test inputs are crucial as they directly impact the evaluation

and improvement of model performance. In order to achieve

effective testing of deep neural networks, researchers have

proposed a variety of test input selection criteria for deep

neural networks from different perspectives, which can play a

role in test input selection and prioritization.

2.1. Model Coverage

Deep neural networks use a deep architecture in neural

networks consisting of many layers, each containing a large

number of neurons [23]. The DNN model coverage criterion

evaluates the adequacy of the test inputs for neural network

testing by calculating their coverage of the model. Test

coverage criteria can be categorized into structural and non-

structural coverage based on whether or not the coverage of

structural elements is considered during testing.

� Structural Coverage

Structural coverage considers the structural elements of

coverage, mainly referring to the coverage of various neurons

[24].

Researchers from Columbia University in the USA, including

Pei et al. [25], designed and proposed the first white-box

framework, DeepXplore, for systematic testing of deep neural

networks. They initially introduced the concept of Neuron

Coverage (NC), defined as the ratio of the number of neurons

activated by the test inputs to the total number of neurons in

the DNN. This measure is used to assess how much of the

DNN's logic is covered and executed by a set of test inputs.

Building on the research of Pei et al., Ma et al. [26] proposed

a set of multi-granularity testing criteria for DNN testing,

DeepGauge. This criterion measures, for a given set of test

inputs, the extent to which it covers the main functions and

boundary conditions of the model, and introduces five

coverage criteria including k-multi-section Neuron Coverage,

neuron boundary coverage, top-k neuron coverage, strong

neuron activation coverage, and top-k Neuron Patterns, at the

neuron level and the layer level, respectively [27]. Tian et al.

[28] designed and implemented DeepInspect, a white-box

testing tool for DNNs, to automatically detect confusions and

biases in DNN-driven image classification applications.

DeepInspect defines metrics such as Neuron Activation

Probability Vector Distance (NAPVD) and Average Bias,

based on the paths of activated neurons in the model.

Inspired by the MC/DC coverage criteria in the field of

passive software testing, Sun et al. [29] proposed four DNN

test input metrics (symbol-symbol coverage, distance-symbol

coverage, symbol-value coverage, and distance-value

coverage) based on the variation of neuron activation values

between neighboring layers; they studied how this variation

affects the outputs of the neurons of the latter layer and

implemented them in the DeepCover tool. Based on the

interaction of test inputs, Ma et al. [30] continued their

exploration in the field of deep neural network testing and

proposed a deep neural network coverage criterion based on

combinatorial testing, which discretizes the output values of

neurons in a deep neural network, takes into account the

neuron activation states and configurations of the DNN, and

defines the neuron-activation configurations as well as two

coverage criteria: the t-way combinatorial sparse coverage

and the t-way combinatorial dense coverage.

Sekhon and Fleming [31] propose that an ideal coverage

criterion must ensure completeness, meaning that all parts of

the internal decision logic of a DNN have been tested by at

least one input. Therefore, they introduce a coverage criterion

consisting of two factors—the conditional impact of each

neuron on the values of the next-layer neurons and the

combination of values in one layer. This criterion takes into

account the conditional decision relationships between

adjacent layers and the combination of neuron values within

the same layer. In addition, the impact of different

combinations of neurons in the preceding layers on the

neurons in the subsequent layers of a DNN model varies [32].

Based on the idea of path-oriented testing, Wang et al. [33]

proposed DeepPath, a series of path-driven testing methods

for DNN testing. DeepPath treats a single neuron in the model

as a node and neuronal connections between different layers

as paths. They proposed three path coverage metrics, l-SAP,

l-OAP and l-FSP to calculate the coverage of a deep neural

network. Zhou et al. [34] proposed DeepCon, a novel

contribution coverage. DeepCon defines the term contribution

as the combination of a neuron's output and the weights of the

connections it emits and uses contribution coverage to

measure the test adequacy of a DNN. A new coverage metric,

NLC (NeuraL coverage), was proposed by Yuan et al [35].

NLC treats a single DNN layer as the basic unit of

computation and accurately describes how DNNs understand

inputs by approximating the distribution. Ji et al. [36]

proposed the first causality-aware DNN coverage criterion,

CC (Causal Coverage), which evaluates test inputs by

quantifying the extent to which the input provides new

causality to the test DNN.

233

� Non-Structural Coverage

In practical testing, the most classical non-structured coverage

is surprising coverage, which treats the difference in DNN

behavior between the test input and the training data as the

surprise adequacy (SA) of the test inputs [24].

Kim et al. [19] proposed SADL, a fine-grained test adequacy

framework for calculating the "surprise value" of test inputs

relative to training inputs, for DNN models. They introduced

two metrics: surprise adequacy (SA) and surprise coverage

(SC). SA quantifies the relative surprise of each input with

respect to the training data, and SC is used to measure the

coverage of the range of discrete input surprises rather than

the count of neurons with specific activation features. Hu et

al. [37] utilized the prediction loss and coverage criteria of

DNN as the criteria for test input selection. Through this

approach, the generated test inputs not only induce

misclassifications in the neural network but also achieve high

neuron coverage. Du et al. [38] proposed two test coverage

criteria for RNN networks based on abstract state-transition

models, state-level and transition-level, to capture their

dynamic state-transition behaviors based on the proposed

DeepCruiser, an automated test framework capable of

systematically generating large-scale test inputs. Table 1

summarizes the information about the existing influential

model coverage criteria.

Table 1. Summary and comparison of model coverage criteria
Coverage Criteria Framework/Tool Advantages Disadvantages Year Open Source

Neuronal Coverage [25] DeepXplore Simple calculation. broad granularity 2017 Yes

k-multi-section Neuron Coverage, Neuron

Boundary Coverage, Strong Neuron
Activation Coverage, Top-k Neuron

Coverage, Top-k Neuron Patterns [26]

DeepGauge Wider coverage.
Calculation
complexity

2018 No

NAPVD, Average Bias [27] DeepInspect

Automatic detection of

confusion and deviation
errors.

Calculation

complexity
2019 Yes

Symbol-Symbol Coverage, Distance-

Symbol Coverage, Symbol-Value
Coverage, Distance-Value Coverage [29]

DeepCover

A more complete picture

of the state inside the
neural network.

Lower

generalizability
2018 No

t-way Combination Sparse Coverage, t-

way Combination Dense Coverage, (p, t)-

Completeness [30]

DeepCT

The combinatorial

relationship of neuron
output values is

considered.

High calculation
cost

2018 Yes

l-length Strong Activated Path Coverage,

l-length Output Activated Path Coverage,

l-length Full State Path Coverage [33]

DeepPath

Comprehensive

consideration of the
connections between

neurons.

Complex
implementation

2018 Yes

Contribution Coverage [34] DeepCon Comprehensive coverage
Complexity of
implementation

2021 No

Neural Coverage [35] /

NLC-guided input

mutations yield better

and more diverse error
behaviors.

Large time cost 2022 Yes

Causal Coverage [36] / Practical and efficient
Calculation

complexity
2023 No

Surprise Coverage [19] SADL
Capable of accurately
capturing unexpected

values entered.

Dependent datasets 2019 Yes

State Level Coverage, Transition Level
Coverage [38]

DeepCruiser
Enables refined and
simplified testing

Calculation
complexity

2018 No

2.2. Model Robustness

In practice, DNN models may be maliciously attacked by

users thus making wrong judgments. Robustness is a key

property of DNN models in the face of diverse and changing

data, and researchers have proposed a variety of robustness

metrics as test input selection criteria for measuring the degree

to which a DNN performs stably under different inputs. Some

related works [39][40] provide a more detailed analysis of the

performance stability of deep neural networks.

The model's accurate prediction of test inputs is one of the

crucial markers when evaluating model performance. The

metric of accurate prediction, i.e., the percentage of test

samples that the model successfully classifies correctly, is

widely defined as prediction accuracy. It directly reflects the

model's classification ability and performance and is therefore

considered a key factor in assessing model robustness. Hu et

al. [41] proposed a new technique called Aries to select

representative input data, and they argued that the model

should have similar prediction accuracy on data with similar

distances from the decision boundary. In addition to the

model's predictive accuracy, Ling et al. [42] argue that

confidence in predicting incorrect samples can further assess

the robustness of the model. In their study, they proposed two

different criteria. Adversarial class average confidence is

defined as the average predicted confidence for incorrect

234

classes, while true class average confidence is obtained by

averaging the confidence in true classes. This further assesses

the extent to which malicious attacks deviate from real

samples. In practical decision systems, classification models

not only strive to provide accurate predictions but also need to

indicate the likelihood of the predictions being incorrect. Guo

et al. [43] employed Calibration to assess the consistency

between model predicted confidence and actual accuracy.

They plotted a confidence-accuracy curve, and the closer it is

to the perfect diagonal line, the more reliable the model's

predictions are.

Zhou and Patel [44], taking into account the security

implications of adversarial vulnerabilities on deep neural

network models, introduced the concept of "difficulty." They

evaluated the model's robustness score by assessing the

difference in accuracy between clean and perturbed samples

within a certain perturbation range, thereby gauging the

model's robustness. Mangal et al. [45] pointed out that most

existing definitions of robustness primarily focus on the

worst-input scenario of adversarial inputs. They proposed a

probability-based robustness metric: Probabilistic

Robustness. In practical non-adversarial scenarios,

Probabilistic Robustness is a more efficient, rational, and

computationally cost-effective metric. It is defined as the

probability that the neural network's output remains within a

certain range when the difference in inputs is constrained to a

small range, and this probability should be greater than or

equal to a specific threshold of 1−ε. In order to more

accurately measure the robustness of DNN models, Weng et

al. [46] provided a theoretical foundation for transforming

robustness analysis into a local Lipschitz constant estimation

problem. They introduced a novel robustness metric called

CLEVER.

Katz et al. [47] from Stanford University provided an

explanation for the concept of adversarial robustness, which

refers to a model's ability to accurately classify samples

generated through small perturbations. Based on this, many

scholars have designed a series of DNN model robustness

metrics based on the definition of adversarial robustness,

which, unlike CLEVER, have lower computational

complexity and are easier to apply in practice. In adversarial

samples, even a small perturbation can lead to incorrect

labeling. Bastani et al. [48] proposed two metrics to measure

DNN robustness. The first metric assesses the frequency of

adversarial samples, while the second metric quantifies the

severity of these adversarial samples. Carlini et al. [49]

pointed out significant challenges in evaluating defense

methods against adversarial samples. They provided a

practical guide on how to assess the robustness of deep neural

network models.

Cheng et al. [50] argued that the activation value of a single

neuron has a weak correlation with the overall output of the

neural network. Therefore, they proposed eight measurement

criteria, covering four aspects: robustness, interpretability,

completeness, and correctness. However, experimental

validation on mainstream datasets was not conducted. Chen et

al. [51], through studying the distribution of neuron outputs in

DNN models, discovered that the behavioral patterns of

neurons vary for different types of DNN inputs. Therefore,

they extracted neuron behavioral patterns of DNNs under

different adversarial attack techniques as criteria for test input

selection.

2.3. Model Uncertainty

In DNN testing, the uncertainty of a model can be expressed

by uncertainty quantification metrics such as entropy,

confidence, etc., which are commonly used to assess the

uncertainty of a model's predictions for specific inputs [52].

The greater the uncertainty of the model with respect to

candidate inputs, the more likely the inputs are to trigger

erroneous behavior, and thus the performance of the model

under uncertainty can be better probed by selecting test inputs

that introduce higher levels of uncertainty in the selection of

test inputs.

Information entropy is an important measure of system

uncertainty, and the uncertainty of a random variable is

positively correlated with its information entropy, i.e., the

higher the information entropy, the greater the uncertainty of

the random variable. In deep learning, information entropy is

used to measure the degree of uncertainty in model output

prediction. Gal and Ghahramani [53] proposed a Dropout-

based Bayesian deep neural network to estimate the model's

prediction uncertainty by performing multiple sampling

predictions with Dropout and aggregating the predictions. In

addition, Kendall and Gal [54] proposed an uncertainty

measure that incorporates information entropy and model

output entropy for uncertainty estimation in regression

problems.

Ma et al. [55] suggest performing test input selection based on

the criterion of model uncertainty, where model uncertainty

can guide the selection of information input data. Van et al.

[56] proposed a method called deterministic uncertainty

quantization, which is a simple way to obtain uncertainty in a

single forward pass using deep neural networks. Bao et al. [57]

proposed a lightweight k-NN prediction smoothing-based test

input selection criterion for deep neural networks to improve

the effectiveness of existing simple test input selection

methods, which takes into account not only the uncertainty of

the DNN model on the test inputs themselves, but also the

uncertainty of the model on its neighbors. Aghababaeyan et

al. [58] proposed DeepGD, a black-box multi-targeted test

selection method for deep neural network models. DeepGD

not only selects test inputs with high uncertainty scores to

trigger as many error-predicting inputs as possible, but also

maximizes the probability of revealing obvious errors in a

DNN model by selecting different error-predicting inputs.

2.4. Test Input Diversity

The criterion of diversity of test inputs for deep neural

networks is used to measure the diversity of the test dataset

used in the testing process of deep neural networks. By

evaluating the diversity of the test input set, it can be ensured

235

that the selected test input set does not suffer from insufficient

sample coverage, imbalance of sample classes, or similarity of

sample data, which is crucial for the testing of deep neural

networks.

In practical applications, geometric diversity is widely

employed in the field of test input selection. This criterion

measures the extent of coverage of the sample space by

calculating the Euclidean distance between samples in the test

input set. This method assists researchers in quickly assessing

the diversity of the test input set. Normalized compression

distance is a similarity measure based on Kolmogorov

complexity and information distance, which helps to compare

data of different dimensions and scales and transform them

into relatively consistent metrics to compare the similarity

between two objects. In general, the more diverse the test

input set, the larger the value of the normalized compression

distance. The standard deviation is a statistic used to measure

the breadth of distribution or the degree of fluctuation in a data

set. In measuring the diversity of a test input set, the standard

deviation can be used to indicate the degree of variation

among the samples in the input set. Calculating the standard

deviation can help the researcher understand the distribution

among the samples in the test input set and thus assess the

diversity of the input set. As with standardized compressed

distance, a larger value of standard deviation represents a

more diverse input set.

Chen et al. [59] proposed the PACE technique, which selects

test inputs from two parallel choices, including groups and

minority spaces, and combines all the small sets of test inputs

selected, allowing for accurate estimation of the accuracy of

the entire test set. Considering the necessity of test input sets

in deep neural network model testing, Mani et al. [60]

proposed four metrics to measure the goodness of a test input

set based on the coverage of the data points in the model's

feature space, where the equivalence distinction is used to

measure the distribution of the test inputs among the classes.

To avoid bias in testing models that are subsets of any class,

an ideal test input set should contain inputs from each class

and ensure that the inputs are evenly distributed across the

classes. Center-of-mass localization [60] has been proposed to

measure the number of test samples located in the center-of-

mass region of the class cluster diffusion. Ideally, the test

inputs should be uniformly distributed in the feature space of

the model. The center of mass region of a class is the

normalized Euclidean distance of all points belonging to a

class obtained by calculating the average of all eigenvectors

of points belonging to that class and using a radius threshold r

to classify whether a test point is in the center of mass region

or not. In addition, they proposed a boundary condition [60]

to measure the percentage of test inputs that lie near the

boundary for every other class relative to the trained class

cluster. The region near the boundary is the most chaotic

region for the classifier, so testing in this region will provide

a robust assessment of the model. Ideally, a maximum number

of test points with good distribution near the boundary is

required. Based on the extension of boundary conditions,

Mani et al. [60] proposed pairwise boundary conditions for

measuring the boundary conditions of each pair of classes to

check that the boundary conditions of all pairs of classes in the

dataset are tested equally.

Hao et al. [61] proposed MOTS, a multi-objective

optimization-based test input selection method, for selecting a

more efficient subset of test inputs. MOTS employs a multi-

objective optimization algorithm, NSGA-II, which also takes

into account the diversity and uncertainty of test inputs.

Gerasimou et al. [62] proposed DeepImportance as a

systematic approach to testing accompanied by a test

adequacy criterion called Importance-Driven (IDC) to

measure the semantic diversity of the test input set. Zhu et al.

[63] proposed a cluster-based surprise adequacy as a metric

for test input generation, aiming to improve the diversity of

test inputs.

To summarize, the existing test input selection criteria provide

multiple perspectives to assess the quality of test inputs, and

researchers can select a test input set that is more suitable for

a specific DNN model or test requirement based on these

guidelines to discover as many potential problems of the

model as possible and greatly improve the testing efficiency.

3. TEST INPUT SELECTION METHODS

Test input selection is designed to filter a representative and

challenging set of test inputs from a large and complex input

space to ensure a high degree of stability and confidence in the

model for real-world applications. In deep learning, test input

selection addresses the practical question of which subset of

unlabeled data should be labeled to detect errors in deep neural

network models [55]. When considering test input selection

methods for deep neural networks, it is common in existing

research to categorize the methods into two approaches, one

focusing on streamlining the test inputs and the other focusing

on prioritizing the test inputs.

3.1. Test Input Reduction

Test input streamlining aims to select a small subset from a

large number of original inputs to maintain the

representativeness and validity of the input set, while the

annotator only needs to label the subset of test inputs, which

can effectively reduce the complexity of the test and save the

cost of annotation and time, but the method needs to discard

part of the test inputs. Currently, the main test input

refinement methods mainly include random selection

methods, cluster analysis methods, and so on. Random

selection is a basic method that randomly selects test inputs

from the input space. Cluster analysis methods are widely

used in test input streamlining. With cluster analysis, similar

test inputs are grouped into clusters, and representative

samples can subsequently be selected from each cluster, thus

reducing the number of test inputs while maintaining

diversity.

236

3.2. Test Input Prioritization

For successful test input selection, test input prioritization is

used; in this technique, each test input is assigned a priority.

Prioritization is set based on a number of model

measurements, rather than a confusing order, and test inputs

with a high priority are more valuable for testing DNN

models. The test input prioritization technique improves

testing efficiency by ensuring that high priority test inputs are

prioritized to find as many potential problems with the model

as possible. This article focuses on a systematic summary of

DNN test input prioritization selection methods for deep

learning systems in Section 4.

4. TEST INPUT PRIORITIZATION

Test input prioritization is the process of rearranging the order

of execution of test inputs in a test set based on pre-determined

criteria so that higher priority test inputs are executed earlier

in the test execution process than lower priority test inputs.

This chapter describes the DNN test input prioritization

method for deep learning systems. Its workflow diagram is

shown in Figure 2. Firstly, the DNN model and test input set

are entered, and then the test input prioritization assignment is

performed. Table 2 summarizes the related work, and the test

inputs are sorted in descending order according to their

priority.

Test Inputs

DNN Model

Test Input Priority Score

Coverage

Uncertainty Calculation Embedded Feature Extraction

Mutation Analysis

Sort Descending

Prioritized Test Inputs

Data Distribution States

Figure 2. Test input prioritization workflow

4.1. Coverage

Coverage-based test input prioritization method is a basic and

commonly used method in deep neural network testing. The

main goal is to find input sample inputs that can reach more

neurons in the test set, thus covering as much of the entire deep

neural network as possible and testing the overall performance

or potential problems of the model. The main idea behind the

coverage metric is that high coverage of the DNN architecture

is a useful metric for testing the validity of inputs [55].

Deep neural network neuron coverage is widely used as a

prioritization metric in coverage-based approaches. Ma [26]

and others proposed several neuron coverage criteria in their

study, including k-multi-region neuron coverage, neuron

boundary coverage, top-k neuron coverage, and strong neuron

activation coverage. Guo et al. [64] proposed MOON, a white-

box test input selection method based on multi-objective

optimization, which focuses on the coverage of neurons and

uses the neuron spectrum (neuron spectrum) to locate neurons

that may lead to incorrect decisions in deep neural network

models. Some researchers have considered that neurons in

neural networks are not independent but need to be considered

in a combinatorial context. Sun et al. [65] proposed the first

combinatorial coverage test for deep neural networks, an

approach that takes into account the interactions of neurons

during activation. Li et al. [66] proposed an effective test for

variance reduction via conditional reflection as a

generalization of structural coverage and used a distributional

approximation technique based on cross-entropy

minimization for deep neural networks.

4.2. Uncertainty Calculation

Prioritization of test inputs using uncertainty as a basis is a

strategy for prioritizing test inputs based on their uncertainty

metrics. This uncertainty can originate from the uncertainty of

the test inputs themselves, or from the uncertainty of the effect

that the test inputs have on the behavior of the model. The core

of this approach is that we need to give higher priority to those

inputs that have higher uncertainty.

Back in 2019, Byun et al. [67] investigated this issue. They

evaluated the validity of three such semantic metrics

measuring prioritization (including confidence, uncertainty,

and unexpected values) and compared their error-revealing

ability and retraining effectiveness. Feng et al. [16] proposed

DeepGini, a deep neural network-based technique for

prioritizing test inputs from a statistical perspective, which is

based on statistical theory and transforms the problem of

calculating the probability of misclassification into calculating

the ensemble index. In contrast to traditional white-box testing

methods, DeepGini does not need to record a large amount of

information about neurons in order to compute the coverage

rate and instead relies on the output variables of the deep

neural network in order to determine the prioritization of test

inputs. Based on [16], in 2022, Weiss and Tonella [68]

replicated the study of Feng et al. and found that DeepGini

outperforms various types of SURPRISE and neuronal

coverage metrics in terms of execution time, test

prioritization, and active learning efficiency. Wang et al. [69]

proposed a method based on crossing-layer dissection,

Dissector, which distinguishes between external and internal

inputs by collecting evidence of prediction uniqueness and

works in a model-aware and lightweight manner. Pan et al.

[70] designed a test input prioritization system based on Gini

impurity, where the system models a series of related

operations as a directed acyclic graph. Measurements are

calculated based on the Gini impurity formula and used as a

basis for comparison when prioritizing test inputs.

Sun et al. [71] proposed Robust Test Selection (RTS), a robust

test selection method for DNNs, which divides unlabeled test

237

inputs into noisy, successful, and suspicious sets. RTS then

assigns different selection priorities to each of these sets and

ultimately prioritizes test inputs in each of the separated sets

using a test metric based on a probabilistic hierarchy matrix.

In practical applications, different inputs have different noise

sensitivities. Therefore, Zhang et al. [72] proposed a test input

prioritization technique based on noise sensitivity analysis to

select inputs based on their noise sensitivity.

4.3. Embedded Feature Extraction

Prioritization of test inputs can be based on embedded feature

extraction, which involves converting the test inputs into

vector or embedded form, calculating the similarity or

distance between them in some kind of metric space, and then

prioritizing the test inputs based on the values obtained.

Zhang et al. [73] proposed a test input prioritization method

for DNN classifiers that assigns high priority to those inputs

that may lead to misclassification. Prioritization is calculated

based on the activation patterns of neurons obtained from the

training set and activated neurons collected from certain

inputs. Related studies have also been done by Yan et al. [74].

Tao et al. [75] proposed a fault localization-based

prioritization method TPFL for deep neural network test

inputs based on the idea of fault localization technique based

on spectrum. TPFL firstly performs dynamic spectral analysis

of each neuron in the DNN and then uses neuron spectra to

identify suspicious neurons that cause the DNN to make an

incorrect decision; finally, based on the test inputs that make

the suspicious neuron fully active, TPFL concludes that this

may be a revealing incorrect input, and therefore the input

should have a higher priority. Weng et al. [76] proposed

DeepView, a novel instance-level test prioritization tool that

aims to improve model performance by calculating the ability

to localize and classify object detection instances to prioritize

instances in the dataset that may lead to model errors.

Chen et al. [77] proposed the concept of an activation graph

from the perspective of neuron spatial relations and designed

an activation graph-based test input prioritization method,

ActGraph, by extracting the higher-order node features of the

activation graph for prioritization, which explains the

differences between the test inputs in order to solve the

scenario-constrained problem. Li et al. [78] proposed a new

test input prioritization technique, TestRank, which ranks

unlabeled test data based on the likelihood of failure. Unlike

traditional methods, TestRank exploits the intrinsic and

contextual properties of unlabeled test data when prioritizing

them. In order to overcome the limitations of existing test

input prioritization methods in the three aspects of

certifiability, validity and generality, Zheng et al. [79]

proposed CertPri, a test input prioritization technique

designed based on the mobile cost perspective of test inputs in

the DNN feature space.

4.4. Mutation Analysis

The prioritization of test inputs can also be based on the degree

of mutation applied to the test inputs. This method determines

the priority of a test input by measuring its difference or

similarity to other test inputs. In the field of traditional

software testing input prioritization, researchers have

proposed mutation-based test input prioritization methods

[80][81][82]. In the testing of deep neural networks, the

purpose of mutation is to apply mutations to multiple models

with different structures, enriching the features of the models.

This results in obtaining diverse predictions from multiple

models for the same test input, effectively evaluating the test

input [55].

Prioritization of test inputs can also be done based on the

degree of variability of the test inputs, which is prioritized by

measuring the degree of difference or similarity between the

test inputs and other test inputs. Typically in practice, test

inputs with a high degree of variability are given a higher

priority because they are more likely to reveal errors or

instabilities in the model. Wang et al. [10] proposed a deep

neural network (DNN) test input prioritization method called

PRIMA, based on intelligent mutation analysis. PRIMA

obtains multiple mutation results from a series of designed

models and input mutation rules for each test input. It further

incorporates machine learning for sorting, intelligently

combining these mutation results to achieve effective test

input prioritization.

In general, DNN test inputs are independent of each other,

while GNN test inputs are usually represented as graphs with

complex relationships between each test. Dang et al. [83]

introduced a test input prioritization technique for Graph

Neural Networks (GNN) named GraphPrior. GraphPrior

generates mutation models and evaluates test inputs based on

two methods: kill-based and feature-based, utilizing mutation

results. Finally, it prioritizes all test inputs according to their

scores. Wei et al. [84] proposed an efficient and effective test

input prioritization technique, EffiMAP, which incorporates

predictive mutation analysis capabilities. It predicts whether a

model mutation is killed by a test input based on information

extracted from the test input's execution trace. Wang et al. [85]

proposed a method for runtime detection of adversarial

samples. The core idea of this method is to apply random

mutations on a DNN. When given a test input to the deep

neural network, it determines whether the input could be an

adversarial example.

4.5. Data Distribution States

The prioritization method of test inputs can be determined

based on the state of data distribution; the basic idea is to

determine the importance and coverage of each test input with

respect to the whole input set by analyzing the data

distribution of the test inputs in detail. The researchers can

assign appropriate priorities to the test inputs based on their

distribution in the input set.

Gao et al. [86] proposed measuring the behavioral diversity of

DNN test inputs based on the differences between model

outputs. The objective is to select a subset from a large pool

of unlabeled datasets. Shen et al. [87] proposed a technique

that clusters test inputs into boundary regions of multiple

238

boundaries of a deep learning model and assigns priority to

uniformly select inputs from all boundary regions. Al-Qadasi

et al. [88] proposed the DeepAbstraction technique, which

prioritizes test inputs more likely to expose errors across the

entire unlabeled test dataset.

The existing methods in current research often employ simple

statistical techniques or are based on kernel density

estimation. However, these methods may struggle to capture

the complex characteristics and nonlinear correlations within

data distributions. Therefore, future research could consider

utilizing more sophisticated probabilistic models.

Table 2. Summary and comparison of test input priority sorting methods
Priority Criteria Data Requirements Advantages Disadvantages Applicable Scenarios

Coverage
Coverage of different
parts of the DNN

model by test inputs.

Detailed neural
network structure is

required.

Comprehensive

consideration of different

layers and components
of the neural network.

Computational complexity
is high, and the overhead is

significant.

Regression or

classification models

Uncertainty
Calculation

The degree of

uncertainty in the
model's output caused

by test inputs.

The model's output
results are required.

Simple and direct.
Difficulties in setting
uncertainty thresholds.

Regression or
classification models

Data
Distribution
States

Data distribution

status of test inputs.

Building the data

distribution.

Considering the global

distribution state of the
test inputs.

Difficulties in constructing

the data distribution.
classification models

Embedded
Feature
Extraction

Similarity or distance

between test inputs.

Feature vectors need

to be extracted.
High generality.

Feature extraction is

challenging, and
computation is complex.

Regression or

classification models

Mutation
Analysis

The degree of

variation in test
inputs.

Test inputs that

undergo variation.
The test space is large.

Difficulty in formulating

mutation rules.

Regression or

classification models

5. DISCUSSION

Impact of Different Test Input Selection Criteria. The

model coverage criterion focuses on whether the test set

covers the internal structure of the model and helps to

comprehensively assess the model’s performance. The model

robustness criterion focuses on the robustness of the model to

anomalous inputs and can reveal model vulnerabilities and

deficiencies. The Model Uncertainty criterion focuses on the

model's predictive confidence in the inputs and expands the

test set to cover edge inputs. The test input diversity criterion

ensures that the test set covers different data distributions and

scenarios to comprehensively assess model performance.

Impact of Different Testing Input Prioritization
Strategies. Coverage-based methods are able to

comprehensively assess the validity of the test set by

considering the coverage of the internal structure of the neural

network and are particularly suited to ensuring comprehensive

testing of the model structure. Methods based on uncertainty

calculation focus on the model prediction uncertainty of the

test samples, are more effective in mining the performance of

the model in edge cases, and are suitable for improving the

robustness of the model. Methods based on data distribution

state help to evaluate model performance in different data

scenarios by considering the distribution of data in the model

and are suitable for tasks with diverse data distributions.

Methods based on feature extraction focus on the important

characteristics of test samples and can select key test samples

in a targeted manner, which is suitable for complex tasks and

large-scale neural networks. Methods based on mutation

analysis help to find the sensitivity of the model to input

changes by introducing test samples that make small changes

to the model and are suitable for finding the boundary cases

of the model.

Challenge. Despite numerous research achievements in the

current studies related to the selection and prioritization of test

inputs for deep neural networks, challenges persist in this

research field due to the increasing scale of deep neural

network models and their datasets, coupled with the inherent

lack of interpretability in these models.

� As the scale of deep learning models continues to grow

and datasets involved become increasingly vast, the

challenge of efficiently selecting and prioritizing test

inputs within limited time and computational resources

becomes more formidable.

� Deep learning models are often regarded as "black

boxes." The challenge lies in introducing interpretability

into the process of test input selection and prioritization,

aiding researchers and practitioners in better

understanding the behavior and performance of neural

network models. This will be a crucial challenge.

� Different application scenarios and specific domains may

have varying requirements for test input needs and

prioritization. The future challenge lies in designing

flexible test input selection and prioritization algorithms

that can be personalized and customized based on the

specific demands corresponding to a given scenario.

Threat To Validity. In conducting this literature review,

certain potential threats to the validity and comprehensiveness

of the analysis were considered. These threats include

publication bias, as the literature search might not have

captured all relevant studies, language bias, as only papers

published in English were included, and selection bias, as the

criteria used for paper inclusion might introduce subjectivity.

239

Additionally, the temporal bias could be a concern, as newer

studies may not have been adequately represented in the

review. Despite these potential threats, efforts were made to

mitigate them through a systematic search strategy, inclusion

criteria, and a comprehensive evaluation of the selected

papers. The acknowledgment of these threats is essential for a

nuanced interpretation of the findings and suggestions for

future research.

6. CONCLUSION

With the widespread application of deep neural networks in

various critical domains, testing deep neural network models

is crucial to ensure model performance, robustness, and

reliability. Test input selection plays a central role in the

testing process. This article provides a detailed review of test

input selection and prioritization for deep neural networks.

Firstly, it introduces the fundamental concepts and

significance of testing deep neural networks, emphasizing the

importance of test input selection. Secondly, it summarizes

and categorizes existing criteria for test input selection in

current research. It then provides a brief overview of two

different test input selection methods. The current study

subsequently focuses on various methods for test input

prioritization, categorizing them based on criteria such as

uncertainty, data distribution status, embedding features, and

more. Finally, it discusses the challenges in this research area

and outlines future work, concluding with a reliability analysis

and summary.

REFERENCES

[1] Sudha, V. and Vijendran, A.S., 2024. OSD-DNN: Oil
Spill Detection using Deep Neural Networks.
International Journal of Performability Engineering,
20(2), pp. 57-67.

[2] Bhandari, R., Singla, S., Sharma, P. and Kang, S.S.,
2024. AINIS: An Intelligent Network Intrusion System.
International Journal of Performability Engineering,
20(1), 24-31.

[3] Sun, Y., Chen, Y., Wang, X. and Tang, X., 2014. Deep
learning face representation by joint identification-verification.
Advances in neural information processing systems, 27.

[4] Bojarski, M., Del Testa, D., Dworakowski, D., Firner,
B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M.,
Muller, U., Zhang, J. and Zhang, X., 2016. End to end
learning for self-driving cars. arxiv preprint
arxiv:1604.07316.

[5] Minaee, S., Boykov, Y., Porikli, F., Plaza, A.,
Kehtarnavaz, N. and Terzopoulos, D., 2021. Image
segmentation using deep learning: A survey. IEEE
transactions on pattern analysis and machine
intelligence, 44(7), pp.3523-3542.

[6] Chen, J., He, X., Lin, Q., Zhang, H., Hao, D., Gao, F.,
Xu, Z., Dang, Y. and Zhang, D., 2019, November.
Continuous incident triage for large-scale online service
systems. In 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE)
(pp. 364-375). IEEE.

[7] Chen, J., He, X., Lin, Q., Xu, Y., Zhang, H., Hao, D., Gao,
F., Xu, Z., Dang, Y. and Zhang, D., 2019, May. An
empirical investigation of incident triage for online service
systems. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice
(ICSE-SEIP) (pp. 111-120). IEEE.

[8] Chen, J., Zhang, S., He, X., Lin, Q., Zhang, H., Hao, D.,
Kang, Y., Gao, F., Xu, Z., Dang, Y. and Zhang, D., 2020,
December. How incidental are the incidents?
characterizing and prioritizing incidents for large-scale
online service systems. In Proceedings of the 35th
IEEE/ACM International Conference on Automated
Software Engineering (pp. 373-384).

[9] Yang, L., Chen, J., Wang, Z., Wang, W., Jiang, J., Dong,
X. and Zhang, W., 2021, May. Semi-supervised log-
based anomaly detection via probabilistic label
estimation. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE) (pp. 1448-
1460). IEEE.

[10] Wang, Z., You, H., Chen, J., Zhang, Y., Dong, X. and
Zhang, W., 2021, May. Prioritizing test inputs for deep
neural networks via mutation analysis. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE) (pp. 397-409). IEEE.

[11] Zhang, M., Zhang, Y., Zhang, L., Liu, C. and Khurshid,
S., 2018, September. Deeproad: Gan-based metamorphic
testing and input validation framework for autonomous
driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software
Engineering (pp. 132-142).

[12] Dunn, I., Pouget, H., Kroening, D. and Melham, T.,
2021, July. Exposing previously undetectable faults in
deep neural networks. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing
and Analysis (pp. 56-66).

[13] Ji, P., Feng, Y., Liu, J., Zhao, Z. and Xu, B., 2021,
November. Automated testing for machine translation
via constituency invariance. In 2021 36th IEEE/ACM
International Conference on Automated Software
Engineering (ASE) (pp. 468-479). IEEE.

[14] Odena, A., Olsson, C., Andersen, D. and Goodfellow, I.,
2019, May. Tensorfuzz: Debugging neural networks with
coverage-guided fuzzing. In International Conference on
Machine Learning (pp. 4901-4911). PMLR.

[15] Ma, S., Liu, Y., Lee, W.C., Zhang, X. and Grama, A.,
2018, October. MODE: automated neural network
model debugging via state differential analysis and input
selection. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering (pp. 175-186).

[16] Feng, Y., Shi, Q., Gao, X., Wan, J., Fang, C. and Chen, Z.,
2020, July. Deepgini: prioritizing massive tests to enhance
the robustness of deep neural networks. In Proceedings of

240

the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 177-188).

[17] Zhou, J., Li, F., Dong, J., Zhang, H. and Hao, D., 2020,
October. Cost-effective testing of a deep learning model
through input reduction. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering
(ISSRE) (pp. 289-300). IEEE.

[18] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu,
Y., Zhao, J., Li, B., Yin, J. and See, S., 2019, July.
Deephunter: a coverage-guided fuzz testing framework
for deep neural networks. In Proceedings of the 28th
ACM SIGSOFT international symposium on software
testing and analysis (pp. 146-157).

[19] Kim, J., Feldt, R. and Yoo, S., 2019, May. Guiding deep
learning system testing using surprise adequacy. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE) (pp. 1039-1049). IEEE.

[20] Zhang, J.M., Harman, M., Ma, L. and Liu, Y., 2020.
Machine learning testing: Survey, landscapes and
horizons. IEEE Transactions on Software Engineering,
48(1), pp.1-36.

[21] Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N.,
Weiss, M. and Tonella, P., 2020. Testing machine
learning based systems: a systematic mapping. Empirical
Software Engineering, 25, pp.5193-5254.

[22] Masuda, S., Ono, K., Yasue, T. and Hosokawa, N., 2018,
April. A survey of software quality for machine learning
applications. In 2018 IEEE International conference on
software testing, verification and validation workshops
(ICSTW) (pp. 279-284). IEEE.

[23] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y. and
Alsaadi, F.E., 2017. A survey of deep neural network
architectures and their applications. Neurocomputing,
234, pp.11-26.

[24] Yan, M., Chen, J., Cao, X., Wu, Z., Kang, Y. and Wang,
Z., 2023. Revisiting deep neural network test coverage
from the test effectiveness perspective. Journal of
Software: Evolution and Process, p.e2561.

[25] Pei, K., Cao, Y., Yang, J. and Jana, S., 2017, October.
Deepxplore: Automated whitebox testing of deep
learning systems. In proceedings of the 26th Symposium
on Operating Systems Principles (pp. 1-18).

[26] Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B.,
Chen, C., Su, T., Li, L., Liu, Y. and Zhao, J., 2018,
September. Deepgauge: Multi-granularity testing criteria
for deep learning systems. In Proceedings of the 33rd
ACM/IEEE international conference on automated
software engineering (pp. 120-131).

[27] Usman, M., Sun, Y., Gopinath, D., Dange, R.,
Manolache, L. and Păsăreanu, C.S., 2023. An overview
of structural coverage metrics for testing neural
networks. International Journal on Software Tools for
Technology Transfer, 25(3), pp.393-405.

[28] Tian, Y., Zhong, Z., Ordonez, V. and Ray, B., 2019.
Testing deep neural network based image classifiers.
CoRR, abs/1905.07831.

[29] Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M. and
Ashmore, R., 2018. Testing deep neural networks. arxiv
preprint arxiv:1803.04792.

[30] Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y. and
Zhao, J., 2019, February. Deepct: Tomographic
combinatorial testing for deep learning systems. In 2019
IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER) (pp.
614-618). IEEE.

[31] Sekhon, J. and Fleming, C., 2019, May. Towards improved
testing for deep learning. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER) (pp. 85-88). IEEE.

[32] Chen, Y., Wang, Z., Wang, D., Fang, C. and Chen, Z.,
2019, April. Variable strength combinatorial testing for
deep neural networks. In 2019 IEEE International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW) (pp. 281-284). IEEE.

[33] Wang, D., Wang, Z., Fang, C., Chen, Y. and Chen, Z.,
2019, April. Deeppath: Path-driven testing criteria for
deep neural networks. In 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest)
(pp. 119-120). IEEE.

[34] Zhou, Z., Dou, W., Liu, J., Zhang, C., Wei, J. and Ye, D.,
2021, March. Deepcon: Contribution coverage testing for
deep learning systems. In 2021 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 189-200). IEEE.

[35] Yuan, Y., Pang, Q. and Wang, S., 2023, May. Revisiting
neuron coverage for dnn testing: A layer-wise and
distribution-aware criterion. In 2023 IEEE/ACM 45th
International Conference on Software Engineering
(ICSE) (pp. 1200-1212). IEEE.

[36] Ji, Z., Ma, P., Yuan, Y. and Wang, S., 2023, May. Cc:
Causality-aware coverage criterion for deep neural
networks. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE) (pp. 1788-
1800). IEEE.

[37] Hu, L., Ji, S., Dai, Q. and Zhang, P., 2021, August.
Evolutionary Generation of Test Case for Deep Neural
Network Based on Coverage Guidance. In 2021 IEEE
International Conference on Artificial Intelligence
Testing (AITest) (pp. 19-20). IEEE.

[38] Du, X., Xie, X., Li, Y., Ma, L., Zhao, J. and Liu, Y.,
2018. Deepcruiser: Automated guided testing for stateful
deep learning systems. arxiv preprint arxiv:1812.05339.

[39] Ruan, W., Huang, X. and Kwiatkowska, M., 2018.
Reachability analysis of deep neural networks with
provable guarantees. arxiv preprint arxiv:1805.02242.

[40] Huang, X., Kwiatkowska, M., Wang, S. and Wu, M.,
2017. Safety verification of deep neural networks. In
Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-
28, 2017, Proceedings, Part I 30 (pp. 3-29). Springer
International Publishing.

241

[41] Hu, Q., Guo, Y., Xie, X., Cordy, M., Papadakis, M., Ma,
L. and Le Traon, Y., 2023, May. Aries: Efficient testing
of deep neural networks via labeling-free accuracy
estimation. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE) (pp. 1776-
1787). IEEE.

[42] Ling, X., Ji, S., Zou, J., Wang, J., Wu, C., Li, B. and
Wang, T., 2019, May. Deepsec: A uniform platform for
security analysis of deep learning model. In 2019 IEEE
Symposium on Security and Privacy (SP) (pp. 673-690).
IEEE.

[43] Guo, C., Pleiss, G., Sun, Y. and Weinberger, K.Q., 2017,
July. On calibration of modern neural networks. In
International conference on machine learning (pp. 1321-
1330). PMLR.

[44] Zhou, M. and Patel, V.M., 2022. Enhancing adversarial
robustness for deep metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 15325-15334).

[45] Mangal, R., Nori, A.V. and Orso, A., 2019, May.
Robustness of neural networks: A probabilistic and
practical approach. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER) (pp. 93-96). IEEE.

[46] Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao,
Y., Hsieh, C.J. and Daniel, L., 2018. Evaluating the
robustness of neural networks: An extreme value theory
approach. arxiv preprint arxiv:1801.10578.

[47] Katz, G., Barrett, C., Dill, D.L., Julian, K. and
Kochenderfer, M.J., 2017. Reluplex: An efficient SMT
solver for verifying deep neural networks. In Computer
Aided Verification: 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I 30 (pp. 97-117). Springer
International Publishing.

[48] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis,
D., Nori, A. and Criminisi, A., 2016. Measuring neural
net robustness with constraints. Advances in neural
information processing systems, 29.

[49] Carlini, N., Athalye, A., Papernot, N., Brendel, W.,
Rauber, J., Tsipras, D., Goodfellow, I., Madry, A. and
Kurakin, A., 2019. On evaluating adversarial robustness.
arxiv preprint arxiv:1902.06705.

[50] Cheng, C.H., Huang, C.H., Ruess, H. and Yasuoka, H.,
2018, October. Towards dependability metrics for neural
networks. In 2018 16th ACM/IEEE International
Conference on Formal Methods and Models for System
Design (MEMOCODE) (pp. 1-4). IEEE.

[51] Chen, Y., Wang, Z., Wang, D., Yao, Y. and Chen, Z.,
2019, April. Behavior pattern-driven test case selection
for deep neural networks. In 2019 IEEE International
Conference On Artificial Intelligence Testing (AITest)
(pp. 89-90). IEEE.

[52] Shi, Y., Yin, B., Zheng, Z. and Li, T., 2021, December.
An empirical study on test case prioritization metrics for
deep neural networks. In 2021 IEEE 21st International

Conference on Software Quality, Reliability and
Security (QRS) (pp. 157-166). IEEE.

[53] Gal, Y. and Ghahramani, Z., 2016, June. Dropout as a
bayesian approximation: Representing model
uncertainty in deep learning. In international conference
on machine learning (pp. 1050-1059). PMLR.

[54] Kendall, A. and Gal, Y., 2017. What uncertainties do we
need in bayesian deep learning for computer vision?.
Advances in neural information processing systems, 30.

[55] Ma, W., Papadakis, M., Tsakmalis, A., Cordy, M. and
Traon, Y.L., 2021. Test selection for deep learning
systems. ACM Transactions on Software Engineering
and Methodology (TOSEM), 30(2), pp.1-22.

[56] Van Amersfoort, J., Smith, L., Teh, Y.W. and Gal, Y.,
2020, November. Uncertainty estimation using a single
deep deterministic neural network. In International
conference on machine learning (pp. 9690-9700).
PMLR.

[57] Bao, S., Sha, C., Chen, B., Peng, X. and Zhao, W., 2023,
July. In defense of simple techniques for neural network
test case selection. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing
and Analysis (pp. 501-513).

[58] Aghababaeyan, Z., Abdellatif, M., Dadkhah, M. and
Briand, L., 2023. Deepgd: A multi-objective black-box
test selection approach for deep neural networks. ACM
Transactions on Software Engineering and
Methodology.

[59] Chen, J., Wu, Z., Wang, Z., You, H., Zhang, L. and Yan,
M., 2020. Practical accuracy estimation for efficient
deep neural network testing. ACM Transactions on
Software Engineering and Methodology (TOSEM),
29(4), pp.1-35.

[60] Mani, S., Sankaran, A., Tamilselvam, S. and Sethi, A.,
2019. Coverage testing of deep learning models using
dataset characterization. arxiv preprint
arxiv:1911.07309.

[61] Hao, Y., Huang, Z., Guo, H. and Shen, G., 2023, March.
Test input selection for deep neural network
enhancement based on multiple-objective optimization.
In 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER) (pp.
534-545). IEEE.

[62] Gerasimou, S., Eniser, H.F., Sen, A. and Cakan, A.,
2020, June. Importance-driven deep learning system
testing. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (pp.
702-713).

[63] Zhu, J., Tao, C., Guo, H. and Ju, Y., 2023, November.
DeepTD: Diversity-Guided Deep Neural Network Test
Generation. In International Symposium on Dependable
Software Engineering: Theories, Tools, and
Applications (pp. 419-433). Singapore: Springer Nature
Singapore.

[64] Guo, H., Tao, C. and Huang, Z., 2023, October. Multi-

Objective White-Box Test Input Selection for Deep Neural

242

Network Model Enhancement. In 2023 IEEE 34th

International Symposium on Software Reliability

Engineering (ISSRE) (pp. 521-532). IEEE.

[65] Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M.

and Kroening, D., 2018, September. Concolic testing for

deep neural networks. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated

Software Engineering (pp. 109-119).

[66] Li, Z., Ma, X., Xu, C., Cao, C., Xu, J. and Lü, J., 2019,

August. Boosting operational dnn testing efficiency through

conditioning. In Proceedings of the 2019 27th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering (pp. 499-509).

[67] Byun, T., Sharma, V., Vijayakumar, A., Rayadurgam, S.

and Cofer, D., 2019, April. Input prioritization for testing

neural networks. In 2019 IEEE International Conference On

Artificial Intelligence Testing (AITest) (pp. 63-70). IEEE.

[68] Weiss, M. and Tonella, P., 2022, July. Simple techniques

work surprisingly well for neural network test prioritization

and active learning (replicability study). In Proceedings of

the 31st ACM SIGSOFT International Symposium on

Software Testing and Analysis (pp. 139-150).

[69] Wang, H., Xu, J., Xu, C., Ma, X. and Lu, J., 2020, June.

Dissector: Input validation for deep learning applications by

crossing-layer dissection. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering

(pp. 727-738).

[70] Pan, Z., Zhou, S., Wang, J., Wang, J., Jia, J. and Feng, Y.,

2022, August. Test case prioritization for deep neural

networks. In 2022 9th International Conference on

Dependable Systems and Their Applications (DSA) (pp.

624-628). IEEE.

[71] Sun, W., Yan, M., Liu, Z. and Lo, D., 2023. Robust Test

Selection for Deep Neural Networks. IEEE Transactions on

Software Engineering, 49(12), pp.5250-5278.

[72] Zhang, L., Sun, X., Li, Y. and Zhang, Z., 2019. A noise-

sensitivity-analysis-based test prioritization technique for

deep neural networks. arxiv preprint arxiv:1901.00054.

[73] Zhang, K., Zhang, Y., Zhang, L., Gao, H., Yan, R. and Yan,

J., 2020, December. Neuron activation frequency based test

case prioritization. In 2020 International Symposium on

Theoretical Aspects of Software Engineering (TASE) (pp.

81-88). IEEE.

[74] Yan, R., Chen, Y., Gao, H. and Yan, J., 2022. Test case

prioritization with neuron valuation based pattern. Science

of Computer Programming, 215, p.102761.

[75] Tao, Y., Tao, C., Guo, H. and Li, B., 2022, November. Tpfl:

Test input prioritization for deep neural networks based on

fault localization. In International Conference on Advanced

Data Mining and Applications (pp. 368-383). Cham:

Springer Nature Switzerland.

[76] Weng, S., Feng, Y., Yin, Y. and Liu, J., 2023, August.

Prioritizing Testing Instances to Enhance the Robustness of

Object Detection Systems. In Proceedings of the 14th Asia-

Pacific Symposium on Internetware (pp. 194-204).

[77] Chen, J., Ge, J. and Zheng, H., 2023. ActGraph: prioritization

of test cases based on deep neural network activation graph.

Automated Software Engineering, 30(2), p.28.

[78] Li, Y., Li, M., Lai, Q., Liu, Y. and Xu, Q., 2021. Testrank:

Bringing order into unlabeled test instances for deep

learning tasks. Advances in Neural Information Processing

Systems, 34, pp.20874-20886.

[79] Zheng, H., Chen, J. and Jin, H., 2023, September. CertPri:

certifiable prioritization for deep neural networks via

movement cost in feature space. In 2023 38th IEEE/ACM

International Conference on Automated Software

Engineering (ASE) (pp. 1-13). IEEE.

[80] Chen, J., Wang, G., Hao, D., Xiong, Y., Zhang, H., Zhang,

L. and Xie, B., 2018. Coverage prediction for accelerating

compiler testing. IEEE Transactions on Software

Engineering, 47(2), pp.261-278.

[81] Chen, J., 2018, May. Learning to accelerate compiler

testing. In Proceedings of the 40th International Conference

on Software Engineering: Companion Proceeedings (pp.

472-475).

[82] Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao,

D. and Zhang, L., 2020. A survey of compiler testing. ACM

Computing Surveys (CSUR), 53(1), pp.1-36.

[83] Dang, X., Li, Y., Papadakis, M., Klein, J., Bissyandé, T.F.

and Le Traon, Y., 2023. Graphprior: mutation-based test

input prioritization for graph neural networks. ACM

Transactions on Software Engineering and Methodology,

33(1), pp.1-40.

[84] Wei, Z., Wang, H., Ashraf, I. and Chan, W.K., 2022,

December. Predictive mutation analysis of test case

prioritization for deep neural networks. In 2022 IEEE 22nd

International Conference on Software Quality, Reliability

and Security (QRS) (pp. 682-693). IEEE.

[85] Wang, J., Dong, G., Sun, J., Wang, X. and Zhang, P., 2019,

May. Adversarial sample detection for deep neural network

through model mutation testing. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE)

(pp. 1245-1256). IEEE.

[86] Gao, X., Feng, Y., Yin, Y., Liu, Z., Chen, Z. and Xu, B.,

2022, May. Adaptive test selection for deep neural

networks. In Proceedings of the 44th International

Conference on Software Engineering (pp. 73-85).

[87] Shen, W., Li, Y., Chen, L., Han, Y., Zhou, Y. and Xu, B., 2020,

December. Multiple-boundary clustering and prioritization to

promote neural network retraining. In Proceedings of the 35th

IEEE/ACM International Conference on Automated Software

Engineering (pp. 410-422).

[88] Al-Qadasi, H., Wu, C., Falcone, Y. and Bensalem, S., 2022,

August. DeepAbstraction: 2-level prioritization for

unlabeled test inputs in deep neural networks. In 2022 IEEE

International Conference On Artificial Intelligence Testing

(AITest) (pp. 64-71). IEEE.

243

