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Abstract—With the breakthrough advancements of deep 

neural network technology in applications such as image 

processing, autonomous driving, and speech recognition, the 

testing of deep neural network models becomes crucial to 

ensure their performance and reliability. The selection of test 

inputs is a critical step in the testing process. Prioritizing test 

inputs and selecting the most impactful ones can help 

improve testing efficiency to identify potential problems and 

deficiencies in the model as early as possible, given the large 

size of the test dataset and the high cost of annotation. In 

order to gain a deeper understanding of the research progress 

in the field of test input selection for deep neural networks, 

this paper conducts a survey of academic papers in the field 

over the past years. A systematic review of existing research 

outcomes is presented, focusing on the criteria, methods, and 

priority ranking for the selection of test inputs in deep neural 

networks. Additionally, the paper offers insights into future 

challenges for test input selection in deep neural networks. 

Keywords-deep neural networks testing; test inputs; test 
input selection; selection criteria; test input prioritization 

1. INTRODUCTION 

Deep neural networks (DNNs) , commonly employed models 

in deep learning systems, have played a crucial role in 

numerous application domains [1][2], including facial 

recognition [3], autonomous driving [4], image processing 

[5], and software engineering [6][7][8][9]. Despite the great 

success of Deep Neural Network (DNN) models in many 

application areas, existing research indicates that DNN 

models still exhibit numerous potential issues. These issues 

often lead to unpredictable errors in deep learning systems. 

Therefore, detecting erroneous behavior in Deep Neural 

Networks and evaluating model performance have become 

major bottlenecks in the development of deep neural network 

models. Researchers have proposed many testing techniques 

[10][11][12][13][14][15][16][17][18][19] to address this 

challenge. 

There are many key differences between deep neural networks 

and traditional software. Traditional software is typically 

designed and coded based on explicitly defined rules and 

logic, allowing developers to understand the program's 

behavior by tracing the execution paths of the code. In 

contrast, deep neural networks are trained on large-scale 

datasets, and their behavior is influenced by the training data. 

The internal workings of deep neural networks are often 

challenging to interpret. Therefore, testing deep neural 

networks is often regarded as black-box testing, involving 

considerations of data diversity, model robustness, and 

interpretability as specific challenges. Developers frequently 

utilize extensive datasets to retrain DNN models, correcting 

their incorrect behavior and improving overall performance. 

Testing deep neural networks is an effective method for 

ensuring their quality [20]. However, due to the variety and 

size of test inputs, as well as the high cost of labeling test 

inputs, the testing process still has serious efficiency issues. It 

took more than 49,000 people and 9 years to label the 

ImageNet [21] dataset containing millions of images. 

Therefore, in situations with limited annotation budgets, 

identifying and selecting the most representative and 

meaningful test inputs from large-scale unlabeled datasets is 

crucial for enhancing the effectiveness and testing efficiency 

of deep neural network models [22]. 

To gain insights into the issues of DNN test input selection 

and prioritization, this study compiles relevant papers in this 

domain from 2016 to 2023 for review and analysis. The paper 

search primarily utilized keywords such as 'Deep Neural 

Networks Testing,' 'Test Input Selection,' 'Test Input 

Prioritization,' and 'Test Input Metrics.' Influential search 

engines including Google Scholar, Web of Science, Ei 

Village, CNKI, and others; both domestic and international 

were employed for retrieval. By briefly reviewing the titles 

and abstracts of the papers, an initial screening was conducted 

based on predetermined criteria to eliminate papers irrelevant 

to the research question. Subsequently, an in-depth 

investigation into associated works, citations, and references 

in papers identified as highly pertinent was carried out to 

acquire additional literature with higher relevance. This study 

ultimately identified 85 papers relevant to the research 

question. Figure 1 provides a statistical overview of the 

publication distribution of these papers across different years. 

This study consolidates recent research findings in the field of 

test input selection and prioritization and classifies and 

summarizes their main ideas and research approaches. The 

article also identifies the challenges and problems faced in this 

research area of test input selection. The remainder of this 

article is organized in the following manner: Section 2 

describes the criteria for test input selection; Section 3 briefly 

discusses two existing test input selection methods; Section 4 

organizes the various approaches to test input prioritization; 
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Section 5 discusses the current challenges of the technique; 

finally, Section 6 and Section 7 present the threats and 

conclusions of this study, respectively. 

 
Figure 1. The publication distribution of the literature across 

different years 

2. CRITERIA FOR TEST INPUT SELECTION 

In the testing of deep neural networks, the criteria for selecting 

test inputs are crucial as they directly impact the evaluation 

and improvement of model performance. In order to achieve 

effective testing of deep neural networks, researchers have 

proposed a variety of test input selection criteria for deep 

neural networks from different perspectives, which can play a 

role in test input selection and prioritization. 

2.1. Model Coverage 

Deep neural networks use a deep architecture in neural 

networks consisting of many layers, each containing a large 

number of neurons [23]. The DNN model coverage criterion 

evaluates the adequacy of the test inputs for neural network 

testing by calculating their coverage of the model. Test 

coverage criteria can be categorized into structural and non-

structural coverage based on whether or not the coverage of 

structural elements is considered during testing. 

� Structural Coverage 

Structural coverage considers the structural elements of 

coverage, mainly referring to the coverage of various neurons 

[24]. 

Researchers from Columbia University in the USA, including 

Pei et al. [25], designed and proposed the first white-box 

framework, DeepXplore, for systematic testing of deep neural 

networks. They initially introduced the concept of Neuron 

Coverage (NC), defined as the ratio of the number of neurons 

activated by the test inputs to the total number of neurons in 

the DNN. This measure is used to assess how much of the 

DNN's logic is covered and executed by a set of test inputs. 

Building on the research of Pei et al., Ma et al. [26] proposed 

a set of multi-granularity testing criteria for DNN testing, 

DeepGauge. This criterion measures, for a given set of test 

inputs, the extent to which it covers the main functions and 

boundary conditions of the model, and introduces five 

coverage criteria including k-multi-section Neuron Coverage, 

neuron boundary coverage, top-k neuron coverage, strong 

neuron activation coverage, and top-k Neuron Patterns, at the 

neuron level and the layer level, respectively [27]. Tian et al. 

[28] designed and implemented DeepInspect, a white-box 

testing tool for DNNs, to automatically detect confusions and 

biases in DNN-driven image classification applications. 

DeepInspect defines metrics such as Neuron Activation 

Probability Vector Distance (NAPVD) and Average Bias, 

based on the paths of activated neurons in the model. 

Inspired by the MC/DC coverage criteria in the field of 

passive software testing, Sun et al. [29] proposed four DNN 

test input metrics (symbol-symbol coverage, distance-symbol 

coverage, symbol-value coverage, and distance-value 

coverage) based on the variation of neuron activation values 

between neighboring layers; they studied how this variation 

affects the outputs of the neurons of the latter layer and 

implemented them in the DeepCover tool. Based on the 

interaction of test inputs, Ma et al. [30] continued their 

exploration in the field of deep neural network testing and 

proposed a deep neural network coverage criterion based on 

combinatorial testing, which discretizes the output values of 

neurons in a deep neural network, takes into account the 

neuron activation states and configurations of the DNN, and 

defines the neuron-activation configurations as well as two 

coverage criteria: the t-way combinatorial sparse coverage 

and the t-way combinatorial dense coverage. 

Sekhon and Fleming [31] propose that an ideal coverage 

criterion must ensure completeness, meaning that all parts of 

the internal decision logic of a DNN have been tested by at 

least one input. Therefore, they introduce a coverage criterion 

consisting of two factors—the conditional impact of each 

neuron on the values of the next-layer neurons and the 

combination of values in one layer. This criterion takes into 

account the conditional decision relationships between 

adjacent layers and the combination of neuron values within 

the same layer. In addition, the impact of different 

combinations of neurons in the preceding layers on the 

neurons in the subsequent layers of a DNN model varies [32]. 

Based on the idea of path-oriented testing, Wang et al. [33] 

proposed DeepPath, a series of path-driven testing methods 

for DNN testing. DeepPath treats a single neuron in the model 

as a node and neuronal connections between different layers 

as paths. They proposed three path coverage metrics, l-SAP, 

l-OAP and l-FSP to calculate the coverage of a deep neural 

network. Zhou et al. [34] proposed DeepCon, a novel 

contribution coverage. DeepCon defines the term contribution 

as the combination of a neuron's output and the weights of the 

connections it emits and uses contribution coverage to 

measure the test adequacy of a DNN. A new coverage metric, 

NLC (NeuraL coverage), was proposed by Yuan et al [35]. 

NLC treats a single DNN layer as the basic unit of 

computation and accurately describes how DNNs understand 

inputs by approximating the distribution. Ji et al. [36] 

proposed the first causality-aware DNN coverage criterion, 

CC (Causal Coverage), which evaluates test inputs by 

quantifying the extent to which the input provides new 

causality to the test DNN. 
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� Non-Structural Coverage 

In practical testing, the most classical non-structured coverage 

is surprising coverage, which treats the difference in DNN 

behavior between the test input and the training data as the 

surprise adequacy (SA) of the test inputs [24]. 

Kim et al. [19] proposed SADL, a fine-grained test adequacy 

framework for calculating the "surprise value" of test inputs 

relative to training inputs, for DNN models. They introduced 

two metrics: surprise adequacy (SA) and surprise coverage 

(SC). SA quantifies the relative surprise of each input with 

respect to the training data, and SC is used to measure the 

coverage of the range of discrete input surprises rather than 

the count of neurons with specific activation features. Hu et 

al. [37] utilized the prediction loss and coverage criteria of 

DNN as the criteria for test input selection. Through this 

approach, the generated test inputs not only induce 

misclassifications in the neural network but also achieve high 

neuron coverage. Du et al. [38] proposed two test coverage 

criteria for RNN networks based on abstract state-transition 

models, state-level and transition-level, to capture their 

dynamic state-transition behaviors based on the proposed 

DeepCruiser, an automated test framework capable of 

systematically generating large-scale test inputs. Table 1 

summarizes the information about the existing influential 

model coverage criteria.

Table 1. Summary and comparison of model coverage criteria 
Coverage Criteria Framework/Tool Advantages Disadvantages Year Open Source 

Neuronal Coverage [25] DeepXplore Simple calculation. broad granularity 2017 Yes 

k-multi-section Neuron Coverage, Neuron 

Boundary Coverage, Strong Neuron 
Activation Coverage, Top-k Neuron 

Coverage, Top-k Neuron Patterns [26] 

DeepGauge Wider coverage. 
Calculation 
complexity 

2018 No 

NAPVD, Average Bias [27] DeepInspect 

Automatic detection of 

confusion and deviation 
errors. 

Calculation 

complexity 
2019 Yes 

Symbol-Symbol Coverage, Distance-

Symbol Coverage, Symbol-Value 
Coverage, Distance-Value Coverage [29] 

DeepCover 

A more complete picture 

of the state inside the 
neural network. 

Lower 

generalizability 
2018 No 

t-way Combination Sparse Coverage, t-

way Combination Dense Coverage, (p, t)-

Completeness [30] 

DeepCT 

The combinatorial 

relationship of neuron 
output values is 

considered. 

High calculation 
cost 

2018 Yes 

l-length Strong Activated Path Coverage, 

l-length Output Activated Path Coverage, 

l-length Full State Path Coverage [33] 

DeepPath 

Comprehensive 

consideration of the 
connections between 

neurons. 

Complex 
implementation 

2018 Yes 

Contribution Coverage [34] DeepCon Comprehensive coverage 
Complexity of 
implementation 

2021 No 

Neural Coverage [35] / 

NLC-guided input 

mutations yield better 

and more diverse error 
behaviors. 

Large time cost 2022 Yes 

Causal Coverage [36] / Practical and efficient 
Calculation 

complexity 
2023 No 

Surprise Coverage [19] SADL 
Capable of accurately 
capturing unexpected 

values entered. 

Dependent datasets 2019 Yes 

State Level Coverage, Transition Level 
Coverage [38] 

DeepCruiser 
Enables refined and 
simplified testing 

Calculation 
complexity 

2018 No 

2.2. Model Robustness 

In practice, DNN models may be maliciously attacked by 

users thus making wrong judgments. Robustness is a key 

property of DNN models in the face of diverse and changing 

data, and researchers have proposed a variety of robustness 

metrics as test input selection criteria for measuring the degree 

to which a DNN performs stably under different inputs. Some 

related works [39][40] provide a more detailed analysis of the 

performance stability of deep neural networks. 

The model's accurate prediction of test inputs is one of the 

crucial markers when evaluating model performance. The 

metric of accurate prediction, i.e., the percentage of test 

samples that the model successfully classifies correctly, is 

widely defined as prediction accuracy. It directly reflects the 

model's classification ability and performance and is therefore 

considered a key factor in assessing model robustness. Hu et 

al. [41] proposed a new technique called Aries to select 

representative input data, and they argued that the model 

should have similar prediction accuracy on data with similar 

distances from the decision boundary. In addition to the 

model's predictive accuracy, Ling et al. [42] argue that 

confidence in predicting incorrect samples can further assess 

the robustness of the model. In their study, they proposed two 

different criteria. Adversarial class average confidence is 

defined as the average predicted confidence for incorrect 
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classes, while true class average confidence is obtained by 

averaging the confidence in true classes. This further assesses 

the extent to which malicious attacks deviate from real 

samples. In practical decision systems, classification models 

not only strive to provide accurate predictions but also need to 

indicate the likelihood of the predictions being incorrect. Guo 

et al. [43] employed Calibration to assess the consistency 

between model predicted confidence and actual accuracy. 

They plotted a confidence-accuracy curve, and the closer it is 

to the perfect diagonal line, the more reliable the model's 

predictions are. 

Zhou and Patel [44], taking into account the security 

implications of adversarial vulnerabilities on deep neural 

network models, introduced the concept of "difficulty." They 

evaluated the model's robustness score by assessing the 

difference in accuracy between clean and perturbed samples 

within a certain perturbation range, thereby gauging the 

model's robustness. Mangal et al. [45] pointed out that most 

existing definitions of robustness primarily focus on the 

worst-input scenario of adversarial inputs. They proposed a 

probability-based robustness metric: Probabilistic 

Robustness. In practical non-adversarial scenarios, 

Probabilistic Robustness is a more efficient, rational, and 

computationally cost-effective metric. It is defined as the 

probability that the neural network's output remains within a 

certain range when the difference in inputs is constrained to a 

small range, and this probability should be greater than or 

equal to a specific threshold of 1−ε. In order to more 

accurately measure the robustness of DNN models, Weng et 

al. [46] provided a theoretical foundation for transforming 

robustness analysis into a local Lipschitz constant estimation 

problem. They introduced a novel robustness metric called 

CLEVER. 

Katz et al. [47] from Stanford University provided an 

explanation for the concept of adversarial robustness, which 

refers to a model's ability to accurately classify samples 

generated through small perturbations. Based on this, many 

scholars have designed a series of DNN model robustness 

metrics based on the definition of adversarial robustness, 

which, unlike CLEVER, have lower computational 

complexity and are easier to apply in practice. In adversarial 

samples, even a small perturbation can lead to incorrect 

labeling. Bastani et al. [48] proposed two metrics to measure 

DNN robustness. The first metric assesses the frequency of 

adversarial samples, while the second metric quantifies the 

severity of these adversarial samples. Carlini et al. [49] 

pointed out significant challenges in evaluating defense 

methods against adversarial samples. They provided a 

practical guide on how to assess the robustness of deep neural 

network models. 

Cheng et al. [50] argued that the activation value of a single 

neuron has a weak correlation with the overall output of the 

neural network. Therefore, they proposed eight measurement 

criteria, covering four aspects: robustness, interpretability, 

completeness, and correctness. However, experimental 

validation on mainstream datasets was not conducted. Chen et 

al. [51], through studying the distribution of neuron outputs in 

DNN models, discovered that the behavioral patterns of 

neurons vary for different types of DNN inputs. Therefore, 

they extracted neuron behavioral patterns of DNNs under 

different adversarial attack techniques as criteria for test input 

selection. 

2.3. Model Uncertainty 

In DNN testing, the uncertainty of a model can be expressed 

by uncertainty quantification metrics such as entropy, 

confidence, etc., which are commonly used to assess the 

uncertainty of a model's predictions for specific inputs [52]. 

The greater the uncertainty of the model with respect to 

candidate inputs, the more likely the inputs are to trigger 

erroneous behavior, and thus the performance of the model 

under uncertainty can be better probed by selecting test inputs 

that introduce higher levels of uncertainty in the selection of 

test inputs. 

Information entropy is an important measure of system 

uncertainty, and the uncertainty of a random variable is 

positively correlated with its information entropy, i.e., the 

higher the information entropy, the greater the uncertainty of 

the random variable. In deep learning, information entropy is 

used to measure the degree of uncertainty in model output 

prediction. Gal and Ghahramani [53] proposed a Dropout-

based Bayesian deep neural network to estimate the model's 

prediction uncertainty by performing multiple sampling 

predictions with Dropout and aggregating the predictions. In 

addition, Kendall and Gal [54] proposed an uncertainty 

measure that incorporates information entropy and model 

output entropy for uncertainty estimation in regression 

problems. 

Ma et al. [55] suggest performing test input selection based on 

the criterion of model uncertainty, where model uncertainty 

can guide the selection of information input data. Van et al. 

[56] proposed a method called deterministic uncertainty 

quantization, which is a simple way to obtain uncertainty in a 

single forward pass using deep neural networks. Bao et al. [57] 

proposed a lightweight k-NN prediction smoothing-based test 

input selection criterion for deep neural networks to improve 

the effectiveness of existing simple test input selection 

methods, which takes into account not only the uncertainty of 

the DNN model on the test inputs themselves, but also the 

uncertainty of the model on its neighbors. Aghababaeyan et 

al. [58] proposed DeepGD, a black-box multi-targeted test 

selection method for deep neural network models. DeepGD 

not only selects test inputs with high uncertainty scores to 

trigger as many error-predicting inputs as possible, but also 

maximizes the probability of revealing obvious errors in a 

DNN model by selecting different error-predicting inputs. 

2.4. Test Input Diversity 

The criterion of diversity of test inputs for deep neural 

networks is used to measure the diversity of the test dataset 

used in the testing process of deep neural networks. By 

evaluating the diversity of the test input set, it can be ensured 
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that the selected test input set does not suffer from insufficient 

sample coverage, imbalance of sample classes, or similarity of 

sample data, which is crucial for the testing of deep neural 

networks. 

In practical applications, geometric diversity is widely 

employed in the field of test input selection. This criterion 

measures the extent of coverage of the sample space by 

calculating the Euclidean distance between samples in the test 

input set. This method assists researchers in quickly assessing 

the diversity of the test input set. Normalized compression 

distance is a similarity measure based on Kolmogorov 

complexity and information distance, which helps to compare 

data of different dimensions and scales and transform them 

into relatively consistent metrics to compare the similarity 

between two objects. In general, the more diverse the test 

input set, the larger the value of the normalized compression 

distance. The standard deviation is a statistic used to measure 

the breadth of distribution or the degree of fluctuation in a data 

set. In measuring the diversity of a test input set, the standard 

deviation can be used to indicate the degree of variation 

among the samples in the input set. Calculating the standard 

deviation can help the researcher understand the distribution 

among the samples in the test input set and thus assess the 

diversity of the input set. As with standardized compressed 

distance, a larger value of standard deviation represents a 

more diverse input set. 

Chen et al. [59] proposed the PACE technique, which selects 

test inputs from two parallel choices, including groups and 

minority spaces, and combines all the small sets of test inputs 

selected, allowing for accurate estimation of the accuracy of 

the entire test set. Considering the necessity of test input sets 

in deep neural network model testing, Mani et al. [60] 

proposed four metrics to measure the goodness of a test input 

set based on the coverage of the data points in the model's 

feature space, where the equivalence distinction is used to 

measure the distribution of the test inputs among the classes. 

To avoid bias in testing models that are subsets of any class, 

an ideal test input set should contain inputs from each class 

and ensure that the inputs are evenly distributed across the 

classes. Center-of-mass localization [60] has been proposed to 

measure the number of test samples located in the center-of-

mass region of the class cluster diffusion. Ideally, the test 

inputs should be uniformly distributed in the feature space of 

the model. The center of mass region of a class is the 

normalized Euclidean distance of all points belonging to a 

class obtained by calculating the average of all eigenvectors 

of points belonging to that class and using a radius threshold r 

to classify whether a test point is in the center of mass region 

or not. In addition, they proposed a boundary condition [60] 

to measure the percentage of test inputs that lie near the 

boundary for every other class relative to the trained class 

cluster. The region near the boundary is the most chaotic 

region for the classifier, so testing in this region will provide 

a robust assessment of the model. Ideally, a maximum number 

of test points with good distribution near the boundary is 

required. Based on the extension of boundary conditions, 

Mani et al. [60] proposed pairwise boundary conditions for 

measuring the boundary conditions of each pair of classes to 

check that the boundary conditions of all pairs of classes in the 

dataset are tested equally. 

Hao et al. [61] proposed MOTS, a multi-objective 

optimization-based test input selection method, for selecting a 

more efficient subset of test inputs. MOTS employs a multi-

objective optimization algorithm, NSGA-II, which also takes 

into account the diversity and uncertainty of test inputs. 

Gerasimou et al. [62] proposed DeepImportance as a 

systematic approach to testing accompanied by a test 

adequacy criterion called Importance-Driven (IDC) to 

measure the semantic diversity of the test input set. Zhu et al. 

[63] proposed a cluster-based surprise adequacy as a metric 

for test input generation, aiming to improve the diversity of 

test inputs. 

To summarize, the existing test input selection criteria provide 

multiple perspectives to assess the quality of test inputs, and 

researchers can select a test input set that is more suitable for 

a specific DNN model or test requirement based on these 

guidelines to discover as many potential problems of the 

model as possible and greatly improve the testing efficiency. 

3. TEST INPUT SELECTION METHODS 

Test input selection is designed to filter a representative and 

challenging set of test inputs from a large and complex input 

space to ensure a high degree of stability and confidence in the 

model for real-world applications. In deep learning, test input 

selection addresses the practical question of which subset of 

unlabeled data should be labeled to detect errors in deep neural 

network models [55]. When considering test input selection 

methods for deep neural networks, it is common in existing 

research to categorize the methods into two approaches, one 

focusing on streamlining the test inputs and the other focusing 

on prioritizing the test inputs. 

3.1. Test Input Reduction 

Test input streamlining aims to select a small subset from a 

large number of original inputs to maintain the 

representativeness and validity of the input set, while the 

annotator only needs to label the subset of test inputs, which 

can effectively reduce the complexity of the test and save the 

cost of annotation and time, but the method needs to discard 

part of the test inputs. Currently, the main test input 

refinement methods mainly include random selection 

methods, cluster analysis methods, and so on. Random 

selection is a basic method that randomly selects test inputs 

from the input space. Cluster analysis methods are widely 

used in test input streamlining. With cluster analysis, similar 

test inputs are grouped into clusters, and representative 

samples can subsequently be selected from each cluster, thus 

reducing the number of test inputs while maintaining 

diversity. 
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3.2. Test Input Prioritization 

For successful test input selection, test input prioritization is 

used; in this technique, each test input is assigned a priority. 

Prioritization is set based on a number of model 

measurements, rather than a confusing order, and test inputs 

with a high priority are more valuable for testing DNN 

models. The test input prioritization technique improves 

testing efficiency by ensuring that high priority test inputs are 

prioritized to find as many potential problems with the model 

as possible. This article focuses on a systematic summary of 

DNN test input prioritization selection methods for deep 

learning systems in Section 4. 

4. TEST INPUT PRIORITIZATION 

Test input prioritization is the process of rearranging the order 

of execution of test inputs in a test set based on pre-determined 

criteria so that higher priority test inputs are executed earlier 

in the test execution process than lower priority test inputs. 

This chapter describes the DNN test input prioritization 

method for deep learning systems. Its workflow diagram is 

shown in Figure 2. Firstly, the DNN model and test input set 

are entered, and then the test input prioritization assignment is 

performed. Table 2 summarizes the related work, and the test 

inputs are sorted in descending order according to their 

priority. 

Test Inputs

DNN Model

Test Input Priority Score

Coverage

Uncertainty Calculation Embedded Feature Extraction

Mutation Analysis

Sort Descending

Prioritized Test Inputs

Data Distribution States

 
Figure 2. Test input prioritization workflow 

4.1. Coverage 

Coverage-based test input prioritization method is a basic and 

commonly used method in deep neural network testing. The 

main goal is to find input sample inputs that can reach more 

neurons in the test set, thus covering as much of the entire deep 

neural network as possible and testing the overall performance 

or potential problems of the model. The main idea behind the 

coverage metric is that high coverage of the DNN architecture 

is a useful metric for testing the validity of inputs [55]. 

Deep neural network neuron coverage is widely used as a 

prioritization metric in coverage-based approaches. Ma [26] 

and others proposed several neuron coverage criteria in their 

study, including k-multi-region neuron coverage, neuron 

boundary coverage, top-k neuron coverage, and strong neuron 

activation coverage. Guo et al. [64] proposed MOON, a white-

box test input selection method based on multi-objective 

optimization, which focuses on the coverage of neurons and 

uses the neuron spectrum (neuron spectrum) to locate neurons 

that may lead to incorrect decisions in deep neural network 

models. Some researchers have considered that neurons in 

neural networks are not independent but need to be considered 

in a combinatorial context. Sun et al. [65] proposed the first 

combinatorial coverage test for deep neural networks, an 

approach that takes into account the interactions of neurons 

during activation. Li et al. [66] proposed an effective test for 

variance reduction via conditional reflection as a 

generalization of structural coverage and used a distributional 

approximation technique based on cross-entropy 

minimization for deep neural networks. 

4.2. Uncertainty Calculation 

Prioritization of test inputs using uncertainty as a basis is a 

strategy for prioritizing test inputs based on their uncertainty 

metrics. This uncertainty can originate from the uncertainty of 

the test inputs themselves, or from the uncertainty of the effect 

that the test inputs have on the behavior of the model. The core 

of this approach is that we need to give higher priority to those 

inputs that have higher uncertainty. 

Back in 2019, Byun et al. [67] investigated this issue. They 

evaluated the validity of three such semantic metrics 

measuring prioritization (including confidence, uncertainty, 

and unexpected values) and compared their error-revealing 

ability and retraining effectiveness. Feng et al. [16] proposed 

DeepGini, a deep neural network-based technique for 

prioritizing test inputs from a statistical perspective, which is 

based on statistical theory and transforms the problem of 

calculating the probability of misclassification into calculating 

the ensemble index. In contrast to traditional white-box testing 

methods, DeepGini does not need to record a large amount of 

information about neurons in order to compute the coverage 

rate and instead relies on the output variables of the deep 

neural network in order to determine the prioritization of test 

inputs. Based on [16], in 2022, Weiss and Tonella [68] 

replicated the study of Feng et al. and found that DeepGini 

outperforms various types of SURPRISE and neuronal 

coverage metrics in terms of execution time, test 

prioritization, and active learning efficiency. Wang et al. [69] 

proposed a method based on crossing-layer dissection, 

Dissector, which distinguishes between external and internal 

inputs by collecting evidence of prediction uniqueness and 

works in a model-aware and lightweight manner. Pan et al. 

[70] designed a test input prioritization system based on Gini 

impurity, where the system models a series of related 

operations as a directed acyclic graph. Measurements are 

calculated based on the Gini impurity formula and used as a 

basis for comparison when prioritizing test inputs. 

Sun et al. [71] proposed Robust Test Selection (RTS), a robust 

test selection method for DNNs, which divides unlabeled test 
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inputs into noisy, successful, and suspicious sets. RTS then 

assigns different selection priorities to each of these sets and 

ultimately prioritizes test inputs in each of the separated sets 

using a test metric based on a probabilistic hierarchy matrix. 

In practical applications, different inputs have different noise 

sensitivities. Therefore, Zhang et al. [72] proposed a test input 

prioritization technique based on noise sensitivity analysis to 

select inputs based on their noise sensitivity. 

4.3. Embedded Feature Extraction 

Prioritization of test inputs can be based on embedded feature 

extraction, which involves converting the test inputs into 

vector or embedded form, calculating the similarity or 

distance between them in some kind of metric space, and then 

prioritizing the test inputs based on the values obtained. 

Zhang et al. [73] proposed a test input prioritization method 

for DNN classifiers that assigns high priority to those inputs 

that may lead to misclassification. Prioritization is calculated 

based on the activation patterns of neurons obtained from the 

training set and activated neurons collected from certain 

inputs. Related studies have also been done by Yan et al. [74]. 

Tao et al. [75] proposed a fault localization-based 

prioritization method TPFL for deep neural network test 

inputs based on the idea of fault localization technique based 

on spectrum. TPFL firstly performs dynamic spectral analysis 

of each neuron in the DNN and then uses neuron spectra to 

identify suspicious neurons that cause the DNN to make an 

incorrect decision; finally, based on the test inputs that make 

the suspicious neuron fully active, TPFL concludes that this 

may be a revealing incorrect input, and therefore the input 

should have a higher priority. Weng et al. [76] proposed 

DeepView, a novel instance-level test prioritization tool that 

aims to improve model performance by calculating the ability 

to localize and classify object detection instances to prioritize 

instances in the dataset that may lead to model errors. 

Chen et al. [77] proposed the concept of an activation graph 

from the perspective of neuron spatial relations and designed 

an activation graph-based test input prioritization method, 

ActGraph, by extracting the higher-order node features of the 

activation graph for prioritization, which explains the 

differences between the test inputs in order to solve the 

scenario-constrained problem. Li et al. [78] proposed a new 

test input prioritization technique, TestRank, which ranks 

unlabeled test data based on the likelihood of failure. Unlike 

traditional methods, TestRank exploits the intrinsic and 

contextual properties of unlabeled test data when prioritizing 

them. In order to overcome the limitations of existing test 

input prioritization methods in the three aspects of 

certifiability, validity and generality, Zheng et al. [79] 

proposed CertPri, a test input prioritization technique 

designed based on the mobile cost perspective of test inputs in 

the DNN feature space. 

4.4. Mutation Analysis 

The prioritization of test inputs can also be based on the degree 

of mutation applied to the test inputs. This method determines 

the priority of a test input by measuring its difference or 

similarity to other test inputs. In the field of traditional 

software testing input prioritization, researchers have 

proposed mutation-based test input prioritization methods 

[80][81][82]. In the testing of deep neural networks, the 

purpose of mutation is to apply mutations to multiple models 

with different structures, enriching the features of the models. 

This results in obtaining diverse predictions from multiple 

models for the same test input, effectively evaluating the test 

input [55]. 

Prioritization of test inputs can also be done based on the 

degree of variability of the test inputs, which is prioritized by 

measuring the degree of difference or similarity between the 

test inputs and other test inputs. Typically in practice, test 

inputs with a high degree of variability are given a higher 

priority because they are more likely to reveal errors or 

instabilities in the model. Wang et al. [10] proposed a deep 

neural network (DNN) test input prioritization method called 

PRIMA, based on intelligent mutation analysis. PRIMA 

obtains multiple mutation results from a series of designed 

models and input mutation rules for each test input. It further 

incorporates machine learning for sorting, intelligently 

combining these mutation results to achieve effective test 

input prioritization. 

In general, DNN test inputs are independent of each other, 

while GNN test inputs are usually represented as graphs with 

complex relationships between each test. Dang et al. [83] 

introduced a test input prioritization technique for Graph 

Neural Networks (GNN) named GraphPrior. GraphPrior 

generates mutation models and evaluates test inputs based on 

two methods: kill-based and feature-based, utilizing mutation 

results. Finally, it prioritizes all test inputs according to their 

scores. Wei et al. [84] proposed an efficient and effective test 

input prioritization technique, EffiMAP, which incorporates 

predictive mutation analysis capabilities. It predicts whether a 

model mutation is killed by a test input based on information 

extracted from the test input's execution trace. Wang et al. [85] 

proposed a method for runtime detection of adversarial 

samples. The core idea of this method is to apply random 

mutations on a DNN. When given a test input to the deep 

neural network, it determines whether the input could be an 

adversarial example. 

4.5. Data Distribution States 

The prioritization method of test inputs can be determined 

based on the state of data distribution; the basic idea is to 

determine the importance and coverage of each test input with 

respect to the whole input set by analyzing the data 

distribution of the test inputs in detail. The researchers can 

assign appropriate priorities to the test inputs based on their 

distribution in the input set. 

Gao et al. [86] proposed measuring the behavioral diversity of 

DNN test inputs based on the differences between model 

outputs. The objective is to select a subset from a large pool 

of unlabeled datasets. Shen et al. [87] proposed a technique 

that clusters test inputs into boundary regions of multiple 
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boundaries of a deep learning model and assigns priority to 

uniformly select inputs from all boundary regions. Al-Qadasi 

et al. [88] proposed the DeepAbstraction technique, which 

prioritizes test inputs more likely to expose errors across the 

entire unlabeled test dataset. 

The existing methods in current research often employ simple 

statistical techniques or are based on kernel density 

estimation. However, these methods may struggle to capture 

the complex characteristics and nonlinear correlations within 

data distributions. Therefore, future research could consider 

utilizing more sophisticated probabilistic models.

Table 2. Summary and comparison of test input priority sorting methods 
Priority Criteria Data Requirements Advantages Disadvantages Applicable Scenarios 

Coverage 
Coverage of different 
parts of the DNN 

model by test inputs. 

Detailed neural 
network structure is 

required. 

Comprehensive 

consideration of different 

layers and components 
of the neural network. 

Computational complexity 
is high, and the overhead is 

significant. 

Regression or 

classification models 

Uncertainty 
Calculation 

The degree of 

uncertainty in the 
model's output caused 

by test inputs. 

The model's output 
results are required. 

Simple and direct. 
Difficulties in setting 
uncertainty thresholds. 

Regression or 
classification models 

Data 
Distribution 
States 

Data distribution 

status of test inputs. 

Building the data 

distribution. 

Considering the global 

distribution state of the 
test inputs. 

Difficulties in constructing 

the data distribution. 
classification models 

Embedded 
Feature 
Extraction 

Similarity or distance 

between test inputs. 

Feature vectors need 

to be extracted. 
High generality. 

Feature extraction is 

challenging, and 
computation is complex. 

Regression or 

classification models 

Mutation 
Analysis 

The degree of 

variation in test 
inputs. 

Test inputs that 

undergo variation. 
The test space is large. 

Difficulty in formulating 

mutation rules. 

Regression or 

classification models 

5. DISCUSSION 

Impact of Different Test Input Selection Criteria. The 

model coverage criterion focuses on whether the test set 

covers the internal structure of the model and helps to 

comprehensively assess the model’s performance. The model 

robustness criterion focuses on the robustness of the model to 

anomalous inputs and can reveal model vulnerabilities and 

deficiencies. The Model Uncertainty criterion focuses on the 

model's predictive confidence in the inputs and expands the 

test set to cover edge inputs. The test input diversity criterion 

ensures that the test set covers different data distributions and 

scenarios to comprehensively assess model performance. 

Impact of Different Testing Input Prioritization 
Strategies. Coverage-based methods are able to 

comprehensively assess the validity of the test set by 

considering the coverage of the internal structure of the neural 

network and are particularly suited to ensuring comprehensive 

testing of the model structure. Methods based on uncertainty 

calculation focus on the model prediction uncertainty of the 

test samples, are more effective in mining the performance of 

the model in edge cases, and are suitable for improving the 

robustness of the model. Methods based on data distribution 

state help to evaluate model performance in different data 

scenarios by considering the distribution of data in the model 

and are suitable for tasks with diverse data distributions. 

Methods based on feature extraction focus on the important 

characteristics of test samples and can select key test samples 

in a targeted manner, which is suitable for complex tasks and 

large-scale neural networks. Methods based on mutation 

analysis help to find the sensitivity of the model to input 

changes by introducing test samples that make small changes 

to the model and are suitable for finding the boundary cases 

of the model. 

Challenge. Despite numerous research achievements in the 

current studies related to the selection and prioritization of test 

inputs for deep neural networks, challenges persist in this 

research field due to the increasing scale of deep neural 

network models and their datasets, coupled with the inherent 

lack of interpretability in these models. 

� As the scale of deep learning models continues to grow 

and datasets involved become increasingly vast, the 

challenge of efficiently selecting and prioritizing test 

inputs within limited time and computational resources 

becomes more formidable. 

� Deep learning models are often regarded as "black 

boxes." The challenge lies in introducing interpretability 

into the process of test input selection and prioritization, 

aiding researchers and practitioners in better 

understanding the behavior and performance of neural 

network models. This will be a crucial challenge. 

� Different application scenarios and specific domains may 

have varying requirements for test input needs and 

prioritization. The future challenge lies in designing 

flexible test input selection and prioritization algorithms 

that can be personalized and customized based on the 

specific demands corresponding to a given scenario. 

Threat To Validity. In conducting this literature review, 

certain potential threats to the validity and comprehensiveness 

of the analysis were considered. These threats include 

publication bias, as the literature search might not have 

captured all relevant studies, language bias, as only papers 

published in English were included, and selection bias, as the 

criteria used for paper inclusion might introduce subjectivity. 
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Additionally, the temporal bias could be a concern, as newer 

studies may not have been adequately represented in the 

review. Despite these potential threats, efforts were made to 

mitigate them through a systematic search strategy, inclusion 

criteria, and a comprehensive evaluation of the selected 

papers. The acknowledgment of these threats is essential for a 

nuanced interpretation of the findings and suggestions for 

future research. 

6. CONCLUSION 

With the widespread application of deep neural networks in 

various critical domains, testing deep neural network models 

is crucial to ensure model performance, robustness, and 

reliability. Test input selection plays a central role in the 

testing process. This article provides a detailed review of test 

input selection and prioritization for deep neural networks. 

Firstly, it introduces the fundamental concepts and 

significance of testing deep neural networks, emphasizing the 

importance of test input selection. Secondly, it summarizes 

and categorizes existing criteria for test input selection in 

current research. It then provides a brief overview of two 

different test input selection methods. The current study 

subsequently focuses on various methods for test input 

prioritization, categorizing them based on criteria such as 

uncertainty, data distribution status, embedding features, and 

more. Finally, it discusses the challenges in this research area 

and outlines future work, concluding with a reliability analysis 

and summary. 
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