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Abstract—Code classification and code clone are one of

the current research hotspots. How to represent source code

characteristics is a key link in code classification and code

clone. At present, with the rapid development of deep learning,

compared with traditional source code feature representation

methods, deep learning methods can better represent source

code features. However, there are still some shortcomings in

the existing deep learning methods. Some models have high

complexity and lack of parallel ability. To solve this problem,

this paper proposes a source code representation method based

on multi head attention mechanism (SCRMHA). SCRMHA

converts the source code snippet into statement vector and

uses the multi-head attention mechanism to capture the repre-

sentations of the entire code snippet. We apply the obtained

source code snippet characteristics to code classification and

code clone. Experimental results show that the performance

of SCRMHA is better than that of traditional source code

feature representation methods. SCRMHA takes less time than

ASTNN and its complexity is about 1/3 of ASTNN, which can

effectively represent the characteristics of source code.

Keywords–multi-head attention; code clone; code classifica-
tion; source code representation; abstract syntax tree

1. INTRODUCTION

Code classification can help us to better manage and maintain

code. Through profound study of code classification, we can

better understand the structure and function of code. Code

clone can help software companies improve the efficiency of

software development to a certain extent, but if the cloned code

itself has vulnerabilities, then the cloned code with vulnerabil-

ities will lay hidden dangers for the system. At present, code

classification and code clone have aroused extensive research.

One of the key links is how to represent the source code

features.

The traditional methods of extracting source code features are

usually text-based, token sequence based, abstract syntax tree

based, program dependence graph (PDG) based and control

flow graph (CFG) based. For example, Wang et al. [14] use

a token-based approach to obtain the feature representation of

the code. The traditional methods of obtaining code features

can only extract and compare the underlying features, but

can not dig out the rich information behind its structure.

In recent years, the use of neural networks for obtaining

code representations has become increasingly popular. For

example, CDLH [15] uses Tree-LSTM to obtain the features

of code snippets. Wang et al. [13] proposed a fast and accurate

semantic tagging tool called CCStokener, which extracts the

types of relevant nodes in the AST path of each token,

converts these types into fixed dimensional vectors, and then

models their semantic information by applying n-grams on

their related tokens. Ehsan et al. [4] developed a clone ranking

model using machine learning to help developers identify the

clones with the highest risk as early as possible. Guo et al. [5]

proposed a method that can use the similarity of tokens and the

architecture of abstract syntax trees to detect code clones. The

structure of the syntax tree maintains the accuracy of detecting

clone pairs while also maintaining the speed of matching code

similarity. AST can well represent the deep characteristics of

source code, and it can be used for code snippets that can

not be compiled completely to comparative analysis, so it has

caused extensive research and achieved many good results.

Existing networks for feature extraction on AST trees still

face various problems, such as the high complexity and the

lack of parallel processing ability. To solve this problem, this

paper proposes a source code representation method based on

multi-head attention mechanism(SCRMHA).

The main contribution of this paper is the modification of the

ASTNN model to use a multi-head attention mechanism to

capture the features of the entire code snippet. Using multi-

head attention mechanisms allows model to extract source

code features in parallel to a higher degree, which can signifi-

cantly improve training and reasoning speed. Specifically, the

process of extracting features from source code snippets using

the SCRMHA model is as follows: SCRMHA first converts

the source code snippet into an abstract syntax tree (AST),

then cuts the AST into small sequence of statement trees and

encodes the sequence of statement trees into statement vectors

using a statement encoder, then uses a multi-head attention

mechanism to capture the features of the entire code snippet,

and finally uses two public datasets. The obtained code snippet

features are applied to code classification and code clone.

Experimental results show that SCRMHA performs better than

traditional source code representation. SCRMHA takes less

time than ASTNN and is 1/3 as complex as ASTNN, and can

capture source code features effectively.

2. BACKGROUND

In this section, we will introduce the techniques used by

SCRMHA such as AST, multi-head attention mechanism, and
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related work.

2.1 Abstract Syntax Tree

AST is a key data structure in programming language process-

ing, used to represent the abstract syntax structure of source

code [1]. AST can represent the hierarchical structure and

syntax relationships of code, providing a strong foundation for

compilers, interpreters, and various code analysis tools. AST

plays an important role in source code analysis, optimization,

and transformation. Figure 1 shows a source code snippet (a)

from the BigCloneBench [9] (BCB) dataset and an abstract

syntax tree (b) for that source code snippet. As can be seen

from the Figure 1, abstract syntax tree does not include specific

implementation details of source code snippets, but only con-

tains syntax structure information and semantic information of

source code.

2.2 Multi-head Attention Mechanism

The multi-head attention mechanism [11] comes from the

Transformer architecture, which processes sequential data by

computing attention in parallel across different subspaces. This

mechanism allows the model to focus on multiple locations

in the sequence at the same time, capturing complex de-

pendencies. Multi-head attention mechanism is a variant of

self-attention mechanism that can be described as a mapping

between the Query matrix (Q), Key matrix (K), Value matrix

(V), and output matrix, which represents the input data X as

Q, K, V, as shown in formula (1). Where Q ∈ Rn×dk ,K ∈
Rm×dk , V ∈ Rm×dv , dk represents the number of hidden lay-

ers of the neural network,
√
dk is used to avoid the excessive

dimension of Q and K inner product, and plays a regulating

role. In this way, correlations within the data are captured. The

multi-head attention mechanism can capture information about

different subspaces of the same sequence and compute from

different locations of the data, because it can generate multiple

heads of different subspaces for computation depending on

the degree of mapping between Q, K, V and the output

vector. This feature allows the model to focus on and capture

characteristics of different aspects of the data at the same time.

Each head fuses the extracted features, as shown in formula

(2), thereby enhancing the weight of the features and making

the features extracted by the model more comprehensive and

effective.

headi = Attention(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
)Vi (1)

S = Concat(head1, head2, . . . , headn)Whr (2)

2.3 Related work

The rise of deep learning has revolutionized many fields. Deep

learning methods can automatically learn lexical, syntactic,

and semantic information in code, thereby obtaining a feature

representation of the source code. Among the current source

code feature extraction methods combined with deep learning,

AST has caused extensive research and achieved many good

results due to its ability to represent the deep features of the

code well and its ability to compare and analyze the code

using code snippets that cannot be compiled completely. For

example, Zhang et al. [18] proposed a model named ASTNN

for extracting code features. ASTNN decomposes each large

AST into a series of small statement trees, and encodes

the statement trees into vectors by capturing the lexical and

syntactic knowledge of the statements. A bidirectional GRU

model is used to generate a vector representation of the code

snippet. The method has a high accuracy of 98.2% for code

classification and is sufficient to detect all types of code clones.

Zhang et al. [18] combined linear support vector machine with

traditional infrared methods to compare the effectiveness of

astnn. Extract text features using TF-IDF, N-gram, and LDA.

For TF-IDF, they use tokens extracted from the source code

file as the corpus. For N-grams, they set the value of grams to

2 and the maximum number of features to 20000. For LDA,

they set the number of topics to 300. In addition, they also used

deep learning methods to compare with astnn, using TextCNN

and LSTM. They processed code fragments as pure text to

Figure 1. Code snippet and abstract syntax tree
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adapt them to the task of token sequences. For TextCNN,

they set the kernel size to 3, the number of filters to 100, and

for LSTM, they set the dimension of hidden states to 100.

Chochlov et al [3] used the CodeBERT deep neural network

to embed each code snippet into a fixed-length feature vector

to detect clones of type III and type IV. Their results show

a shorter execution time compared to other methods. Mou et

al. [8] proposed a tree based convolutional neural network

(TBCNN), where the ast based convolutional layer is the core

of TBCNN. It applies a fixed depth feature detector by sliding

the entire ast. TBCNN adopts a bottom-up encoding layer to

integrate some global information, improving its locality. Xue

et al. [16] designed a new semantic graph based deep detection

method called SEED. For a pair of code snippets, SEED

constructs a semantic graph of each code snippet based on

intermediate representations to more accurately represent code

semantics compared to representations based on lexical and

syntactic analysis. Hu et al. [6] proposed a tree based scalable

code cloning detector, TreeCen, which satisfies scalability

while effectively detecting semantic clones. Wang et al. [12]

proposed a UAST neural network. Using self attention com-

bined with bidirectional LSTM to extract code AST sequence

features to capture the global logical structure features of

the code, and using Graph Convolutional Network (GCN) to

extract the graph structure features of the AST. After fusing

these two features, the structural and semantic features of the

code are obtained. In order to reduce the differences between

different programming languages, a unified vocabulary is used

to eliminate the differences between different language ASTs

when generating ASTs. Finally, connecting the two feature

vectors together is the code vector. A neural network trained

using this vector for classification can be used to detect cross

language code clones. Zhang et al. [17] proposed a cross

language code plagiarism detection method based on program

flowchart and graph attention network. Firstly, convert the

code into a program flowchart and use a graph attention

network to extract the features of the program flowchart as

a representation of the code. Secondly, the cross matching

method is used to compare the representation of the code

line by line, in order to obtain similar feature vectors of

the code. Finally, the similar feature vectors of the reception

detection code are combined, and the probability of plagiarism

is calculated using a fully connected neural network.

Traditional methods can only detect lexical similarity and

relatively low syntactic similarity, while for stronger syntactic

similarity or semantic similarity, traditional code feature repre-

sentation methods are more difficult to solve. Moreover, there

are problems of high model complexity and lack of parallel

processing ability in deep learning based methods, therefore

we propose a source code representation method based on

multi-head attention mechanism.

3. OUR APPROACH

This section describes the approach taken in this paper. The

structure of SCRMHA model is shown in Figure 2. First,

with the idea of ASTNN splitting AST, SCRMHA takes the

Figure 2. SCRMHA model diagram

function snippet of source code as the granularity, converts

the function snippet of source code into an abstract syntax

tree through an abstract syntax tree parser, then divides AST

into small statement tree sequences through a traverser and

a constructor, and then uses a sentence encoder to capture

the vocabulary and syntax information at the statement level

and express the statement tree sequence as statement vectors.

Finally, deep-level features are extracted using the multi-head

attention mechanism and vector features of the entire code

snippet are obtained through the pooling layer.

3.1 Generating an AST tree and cutting and coding the AST

tree into a sequence of statement trees

Taking the function snippets of the source code as the granu-

larity, the function snippets are converted into AST by using

an AST parser. However, the converted AST suffer from the

problem of partially oversizing, which tends to lead to the

disappearance of the gradient. Therefore, it is necessary to

cut and encode the converted AST into a small sequence

of statement trees. Consider Method Declaration as a special

statement node. First, the statement node S of AST is extracted

by prior order traversal, so we have S′ = S ∪ {Method
Declaration}, and for nested statements such as While,

DoWhile, Try, For, If , Switch, FuncDef , we define the

independent node P = {block,body}. Block is used to slice

the header and body of nested statements and body is used

for method declarations. For all statement nodes s (s ∈ S′),
the child nodes are defined as D(s). For any d ∈ D(s), if

there exists a path between nodes s and d through node p (p
∈ P ), indicating that a statement in node s contains node d,

then node d is called a substatement node of node s. Thus,

s and its descendant node D(s) form a statement tree with

s (s ∈ S) as root. Since a statement tree node may have

three or more child nodes, for such a statement tree node is
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called a multiplexed statement tree. In this way, an AST can

be decomposed into a series of non-overlapping multiplexed

statement trees. The statement tree is constructed recursively

using traversers and constructors and added to the statement

tree sequence. The statement tree sequence order implies

hierarchical information about the code structure. This yields

the statement tree sequence as the raw input to SCRMHA.

For the resulting statement tree sequence, the encoder is used

to encode the statement tree sequence into statement tree vec-

tors. The syntax symbols obtained by the first order traversal

are used as the training corpus, and Word2Vec is used to train

the symbol embedding vector, thus the initial parameters of the

sentence encoder are obtained. Then traversing the statement

tree recursively computes the symbol of the current node as

the new input, and uses a dynamic batch algorithm [18] to

calculate the hidden state of its leaf nodes. Specifically, for

the given statement tree t, let C be the number of child

nodes, n the number of non-leaf nodes, and use the pre-

trained embedding parameter We (We ∈ R
|V |×d ), V is the

vocabulary and d is the embedding dimension, then the lexical

vector of node n is shown in formula (3), where We is the

pre-trained word embedding matrix. xn is the one-hot vector

representation of symbol n and vn is the embedding. The

vector representation of node n is shown in formula (4), where

Wn ∈ R
d×k is a weight matrix with encoding dimension k,

bn is a bias term, hi is the hidden state of the child node i, h
is the updated hidden state, and, σ is the activation function.

Finally, the vector representing et for each statement tree is

obtained by using maximum pooling, as shown in formula (5),

where N is the number of nodes in the statement tree.

vn = We
�xn (3)

h = σ(Wn
�vn +

∑
i∈[1,C]

hi + bn) (4)

et = [maxhi1,maxhi2, · · · ,maxhik], i = 1, 2, · · · , N (5)

3.2 Obtaining a vector representation of a code snippet

The obtained statement tree vector is used as the input of the

multi-head attention mechanism, and the heads of different

subspaces are calculated using formula (1). Then, the extracted

features of each head pair are fused using formula (2) to

enhance the weight of the features and make the features

extracted by the model more comprehensive and effective.

Finally, the most important semantics are captured by sampling

by maximum pooling. Finally, a vector r ∈ R
2m is generated

as a vector representation of the code snippet.

4. APPLICATION OF SCRMHA

The vector representation of code snippets obtained by model

can be applied to multiple tasks. In order to verify the validity

of the model, the model is applied to code classification and

code clone detection, to evaluate the validity of the model and

calculate the complexity of the model.

Table 1. Code clone types
Original Code Code snippet 1 Code snippet 2 Code snippet 3 Code snippet 4

if(a=b)

{
c=a*b;

}
else{
c=a/b;

}

if(a==b)

{
//comment1

c=a*b;

}
else{
//comment2

c=a/b;

}

if(g==f)

{
//comment1

h=g*f;

}
else{
//comment2

c=g/f;

}

if(a==b)

{
//comment1

c=a*b;

//new

b=a-c;

}
else{
//comment2

c=a/b;

}

switch(true)

{
//comment1

case a ==b:

c=a*b;

//comment2

case a!=b;

c=a/b;

}

Type-1 Type-2 Type-3 Type-4

4.1 Code classification

Code classification is a task to classify code snippets according

to their functions in order to facilitate the understanding and

maintenance of programs [8]. In the task of code classification,

first, given the number of categories M , the source code

snippet is sent into the SCRMHA model to obtain the vector

representation t of the source code snippet, and then logits

are used as shown in formula (6), where Wo is the weight

matrix (Wo ∈ R
2m×M ) and bo is the offset term. This paper

uses the cross entropy loss function as the loss function of the

classification task. In the formula, Θ is the ownership heavy

matrix parameter in the model, and y is the true class of the

function snippet. Code classification is a multi classification

task and the predicted value can be obtained by formula (8).

x̂ = Wor + bo (6)

J(Θ, x̂, y) =
∑(

−log
exp(x̂y)∑
j exp(x̂j)

)
(7)

prediction = argmax(pi), i = 1, · · · ,M (8)

4.2 Code clone detection

The code clone detection task can help us identify the copied

code snippets in the program, when the copied code snippets

have security defects, it is conducive to detect the copied code

snippets, and achieve autonomous control. Bellon et al. [2]

classified code clone into four types:

• Type-1: Code pairs in which two code snippets are identical

except for spaces and comments.

• Type-2: Code fragments with identical syntactic structure,

differing only in variable names, numbers, types, characters,

spaces, layout and comments.

• Type-3: Cases where there are several statements or ex-

pressions with additions, deletions, etc., or pairs of code

that use different identifiers, text, types, spaces, layouts, and

comments, but still have similar syntax.

• Type-4: Heterogeneous code for the same function is not

textually or syntactically similar, but semantically similar.

As shown in Table 1, given a simple source code, Type-1
clone example has two more comment statements than the

original code, Type-2 example changes the variable name on

this basis, and Type-3 Type adds the code statement ”b= A-

C;” without changing the semantics. Finally, Type-4 clones
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are syntactically modified, changing the original if statement

structure to the switch structure.

In code clone detection, source code snippets are converted

into two vector fragments r1, r2 by SCRMHA. In this paper,

the distance between r1, r2 is calculated by formula (9) and

r is represented as semantic relevance [10].In this paper, the

sigmoid function is used to obtain the output ŷ, ŷi ∈ [0, 1], as

a measure of similarity, as shown in formula (10) and formula

(11) , where Wo ∈ R
2m×M is the weight matrix and b0 is

the bias term. In this paper, the loss function is defined as a

binary cross entropy loss function, as shown in formula (12).

In order to improve the computational efficiency of the model

and minimize the loss of the model, the optimizer AdaMax

[7] is used in this paper to complete the calculation.

r = |r1 − r2| (9)

x̂ = W0r + b0 (10)

ŷ = sigmoid(x̂) (11)

J(Θ, ŷ, y) =
∑

(−(y · log(ŷ) + (1− y) · log(1− ŷ))) (12)

When all the parameters are optimized, the model is stored. We

load the trained model to make predictions about the statement

tree sequence of the new code snippet. Code clone detection

is a binary task. P is a number in the range [0,1]. We can get

the predicted value by formula (13), where δ is the threshold,

we set δ to 0.5. When p is greater than 0.5, the code pair is

judged to be cloned, otherwise the code pair is not cloned.

prediction =

{
True, p > δ

False, p ≤ δ
(13)

4.3 Complexity calculation

The floating point operations (FLOPs) and the number of

parameters (Params) of a deep learning model are key metrics

for evaluating the performance and complexity of the model.

These two metrics not only affect the training and inference

speed of the model, but also reflect the size and learning

capability of the model.

• FLOPs: FLOPs refer to the number of floating point

operations required when the model performs reasoning or

training tasks. This includes basic mathematical operations

such as addition and multiplication. The amount of calcu-

lation directly affects the efficiency and speed of model

calculation.

• Params: Params refers to the number of weights and biases

in the model to be trained. These parameters learn to

adapt to the input data during the training process, so that

the model can make accurate predictions. The size of the

parameter number is directly related to the capacity of the

model, and a larger parameter number usually indicates that

the model has a strong learning ability, but it may also lead

to overfitting.

5. EXPERIMENT AND RESULT ANALYSIS

In this section the experimental results of the application of

the model to code categorization and code cloning will be

evaluated, comparing the experimental results with traditional

methods. We will also compare the complexity and time

consumed by the model with ASTNN.

5.1 Experiment Data

We use two common datasets for code classification and code

clone detection. One of the two public datasets is 104 pro-

gramming questions collected by Mou et al.[1] from an online

judge system. The other is a dataset provided by Svajlenko et

al. [9] for code clone detection. These two datasets are widely

used by researchers, and these two common datasets can be

applied to model evaluation.

5.2 Evaluation indicators

Code classification is a multi classification task. In multi

classification problems, there may be significant differences in

the number of samples from different categories. In this case,

accuracy and recall may be affected by imbalanced sample

sizes, leading to inaccurate evaluation results. In contrast,

accuracy is a better choice as it considers the correct classifi-

cation of all categories and is more suitable for measuring the

overall performance of multi classification models. Therefore,

for code classification, we only use test accuracy to calculate

the percentage of correctly classified test sets. The calculation

formula of Accuracy is shown in formula (14), where True

Positive (TP) indicates that the prediction result is positive

samples, and the actual samples are also positive samples,

that is, the number of positive samples correctly identified.

False Positive (FP) indicates that the predicted result is positive

sample, but the actual sample is negative, that is, the number

of negative samples is false positive. True Negative (TN)

indicates that the predicted result is negative samples, but the

actual samples are negative samples, that is, the number of

negative samples is correctly identified. False Negative (FN)

indicates that the predicted result is negative samples, but the

actual samples are positive samples, that is, the number of

positive samples missed.

Acc =
TP + TN

TP + FP + TN + FN
(14)

Code clone can be seen as a binary task (clone or not).

Precision, Recall, and F1 values are widely used in binary

classification tasks because they provide the ability to eval-

uate different aspects of model performance on positive and

negative examples, while balancing the accuracy and coverage

of the model. We choose the commonly used Precision, Recall

and F1-measure as evaluation indicators. The calculation for-

mula of P is shown in formula (15). The calculation formula

of R is shown in formula (16). The calculation formula of F1

is shown in formula (17).

P =
TP

TP + FP
(15)
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Table 2. Comparison of code classification test accuracy
Method Test Accuracy(%)

Traditional method

SVM+TF-IDF 79.4

SVM+N-gram 84.7

SVM+LDA 47.9

Deep learning method

TextCNN 88.7

LSTM 88.0

TBCNN 94.0

SCRMHA 97.7

R =
TP

TP + FN
(16)

F =
2TP

2TP + FP + FN
(17)

5.3 Experimental environment

The software environment used in this experiment is Ubuntu

18.04.6 LTS and Python3.8. Based on the existing laboratory

hardware equipment, the hardware environment used in this

experiment is Intel(R) Xeon(R) Gold 6242R CPU (3.10GHz),

256GB running memory, 36TB hard disk, and 4 NVIDIA

GeForce RTX 2080 Ti (11GB video random access memory).

5.4 Experimental results and analysis

In order to better evaluate and analyze the model, we put

forward four questions:

RQ1: How well does our model work on code classification?
Aiming at this problem, we use the OJ dataset to evaluate

the effect of the model on code classification. We compare

with traditional methods (SVM+TF-IDF, SVM+N-gram and

SVM+LDA) and neural network methods (TextCNN, LSTM,

TBCNN). As shown in Table 2. We can find that the effect

of SCRMHA is 18%, 13% and 50% higher than that of

SVM+TF-IDF, SVM+N-gram and SVM+LDA, and 9%, 10%

and 4% higher than that of TextCNN, LSTM and TBCNN,

respectively. This indicates that our method outperforms tra-

ditional methods and neural network methods. This is because

traditional methods can only extract shallow semantic features

of code to classify its functionality, while variable symbols

used in OJ datasets are usually meaningless names such as

i, j, k, a, etc. Therefore, these traditional methods cannot

accurately extract code features and classify them. SCRMHA

uses a multi head attention mechanism to capture the seman-

tic relationships of code sequences, which is more flexible.

SCRMHA can better understand and represent the syntax and

semantic results of the code. At the same time, SCRMHA can

focus on multiple positions in the input sequence, making it

easier to capture global information of the code and better

understand the entire code fragment. This makes SCRMHA

more accurate in extracting code features and improves the

accuracy of code classification. In neural network methods,

although TextCNN can process text in parallel and improve

computational efficiency, its receptive field is fixed and may

not be able to capture long-distance dependencies. SCRMHA,

which uses a multi head attention mechanism, can better han-

dle long-distance dependencies because it takes into account

Figure 3. T-SNE diagram

the relationships of all positions in the sequence when calculat-

ing attention weights. Although LSTM can capture long-term

dependencies in sequences, its information capture is unidi-

rectional and can only look forward from the current position,

without utilizing future information. SCRMHA, which uses a

multi head attention mechanism, can simultaneously consider

the pre - and post information in the sequence, and has a more

comprehensive information capture ability. TBCNN captures

sentence structure information by constructing a syntax tree,

but its feature representation may be limited by the quality

of the tree structure and the construction method. SCRMHA,

which uses a multi head attention mechanism, does not rely

on specific syntactic tree structures and can learn complex

relationships within sequences more flexibly.

The T-SNE diagram can intuitively see the quality of the

feature extraction effect of the model. We use T-SNE to

visualize the feature extraction and show the distribution of

feature extraction. Since there are 104 categories in the code

classification, we select 12 individual categories for visualiza-

tion. As shown in Figure 3, the color of the points represents

which category the sample belongs to. In the Figure 3, some

points that do not gather together are called outliers, and the

outliers represent relatively poor feature extraction of samples,

often those points that are classified incorrectly. Fewer outliers

means better feature extraction. The Figure 3 shows that this

model can distinguish the samples of this category well and

distinguish them from other categories, which indicates that

the feature extraction effect of the model is good.

RQ2:How well does our model work on code clone? For

this problem we use OJ and BCB dataset to assess model on

code clone detection effect. We compare token-based methods

(RAE+,Token-A [14]) with tree-based methods (CDLH). We

divide code clones into four types, namely Type-1, Type-

2,Type-3, and Type-4. In Tpye-3, we can divide it into Type-S3

and Type-M3 according to the strength of clone. A Type-All

is obtained using a weighted sum based on the percentage

of various clone types [15]. Aiming at this problem, we use

the OJ and BCB dataset to assess model effect on code clone.

Since the dataset we use is the same as the dataset in ASTNN,
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Table 3. Comparison results of code clone
Dataset Type P R F1

RAE+

OJ / 52.5 68.3 59.4

BCB

Type-1 100 100 100

Type-2 86.5 97.2 91.5

Type-S3 79.9 72.2 75.9

Type-M3 66.4 74.8 70.3

Type-4 76.3 58.7 66.3

Type-All 76.4 59.1 66.6

CDLH

OJ / 47 73 57

BCB

Type-1 - - 100

Type-2 - - 100

Type-S3 - - 94

Type-M3 - - 88

Type-4 - - 84

Type-All 92 74 82

Token-A BCB

Type-1 - 99 -

Type-2 - 98 -

Type-S3 - 88 -

Type-M3 - 43 -

Type-4 - 2.3 -

Type-All 91 - -

SCRMHA

OJ / 97.6 91.3 94.4

BCB

Type-1 100 100 100

Type-2 100 100 100

Type-S3 99.6 94.3 96.6

Type-M3 99.6 91.4 95.4

Type-4 98.8 88.6 93.4

Type-All 98.9 88.7 93.5

and ASTNN has done comparisons with other models, we

refer directly to the results of code clones of pairs in ASTNN.

As can be seen from Table 3, our SCRMHA model is superior

to RAE+, Token-A and CDLH. In OJ dataset, SCRMHA is

45%, 23% and 35% higher than RAE+ in accuracy, recall rate

and F1 value, and 50%, 18% and 37% higher than CDLH,

respectively. In BCB, SCRMHA is 22%, 30% and 27% higher

than RAE+, and 7%, 15% and 11% higher than CDLH,

respectively. In terms of clone Types 1-4, it can be seen from

the Table 3 that SCRMHA is superior to Token-A in terms of

accuracy and recall rate. This is because RAE+ and Token-A

use a token-based approach, which is the smallest unit of code

that typically contains only lexical information and ignores

syntactic and semantic information. This causes token-based

approaches to have limitations in understanding the structure

and meaning of the code. Although CDLH uses Tree-LSTM,

it is difficult to capture a lot of lexical information due to

the use of a large number of i, j, k and other variables with

no practical meaning in the OJ dataset, resulting in the loss

of a lot of lexical information. In BCB datasets, SCRMHA

uses multi-head attention to allow a higher degree of parallel

processing to focus on multiple locations in the sequence at

the same time, thus capturing complex dependencies and thus

performing well with CDLH.

RQ3: How does the effect of our model compare to the effect

Table 4. Code classification comparison results
Test Accuracy(%)

ASTNN 98.2

SCRMHA 98.0

Table 5. Code Clone Comparison Results
Dataset Type P R F1

ASTNN

OJ / 98.9 92.7 95.5

BCB

Type-1 100 100 100

Type-2 100 100 100

Type-S3 99.9 94.2 97.0

Type-M3 99.9 91.5 95.3

Type-4 99.6 88.4 93.7

Type-All 99.6 88.6 93.8

SCRMHA

OJ / 97.6 91.3 94.4

BCB

Type-1 100 100 100

Type-2 100 100 100

Type-S3 99.6 94.3 96.6

Type-M3 99.6 91.4 95.4

Type-4 98.8 88.6 93.4

Type-All 98.9 88.7 93.5

of the ASTNN model?
From Table 4, we can see that in terms of code classification,

the acc of the modified model is slightly lower than that of the

original model, and the prediction labels and actual labels of

ASTNN and SCRMHA are shown in Figure 4. From Table 5,

we can see that in terms of code clone detection, the P and F1

value of the modified model are slightly lower than that of the

original model, which may be due to the following reasons:

• SCRMHA uses a multi-head attention mechanism, which,

due to its complexity, may be more prone to overfitting,

especially if relatively little training data may require a

larger dataset to take full advantage of it, and performance

may suffer if the data volume is small.

• Multi-head attention mechanisms may be more sensitive to

the characteristics of the data when processing it. If the char-

acteristics of the dataset do not match the expectations of

the multi-head attention mechanism, such as focusing more

on local information than global information, performance

can be degraded. In the field of code, different pieces of

code may have different dependency structures, which can

affect the performance of multi-head attention mechanisms.

• Multi-head attention mechanisms and GRU (neural net-

works used in ASTNN) may have different advantages when

dealing with different types of tasks. The recall rate is

slightly higher than that of the original model, indicating

that the model is slightly stronger than ASTNN for the true

clone pairs of Type-S3 and Type-4.

RQ4: How does the complexity of our model compare to
that of ASTNN?
We used Python’s thop library to calculate FLOPs and Params

the model.The complexity and time consumption of the two

models, as shown in Table 6. The results show that the

complexity of SCRMHA is about 1/3 that of ASTNN, and
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Figure 4. ASTNN (left) SCRMHA (right)

Table 6. Complexity comparison

FLOPs(M) Params(M)

Time Consuming (S)

Code Classification
Code Clone

OJ BCB

ASTNN 234.15 0.18 5862 1087 5664

SCRMHA 77.64 0.05 5249 1059 5120

the time spent in code classification and cloning is also better

than ASTNN under the premise of no obvious reduction in

accuracy, presion, recall and F1. This shows that the proposed

method can effectively reduce the complexity of the model on

the premise of ensuring the accuracy. This may be because,

relative to traditional RNN or GRU structures, multi-head

attention mechanisms can share the parameters of the attention

mechanism, so the number of parameters may be relatively

reduced. This method of parameter sharing can reduce the

complexity of the model, and the multi-head attention mech-

anism can compute multiple attention heads in parallel when

processing sequence data, so the computational efficiency is

improved to some extent. In contrast, loop structures such as

RNN and GRU typically require step-by-step computation in

chronological order, making effective parallelization difficult.

The parallel computing power of multi-head attention helps

reduce overall computational complexity.

6. VALIDITY THREATS

In some cases, multi-head attention may be easier to overfit

due to their complexity, especially if there is relatively little

training data. Specifically, the accuracy rate, accuracy rate and

F1 value of the modified model in code classification and

code clone are slightly lower than the original model, which

can be optimized by adjusting the number of heads of the

multi-head attention mechanism and increasing the data in the

dataset. While the attention mechanism provides a degree of

explainability (for example, by looking at attention weights),

its inner workings are often more difficult to explain than

RNN-based models.

7. CONCLUSION

This paper presents a method of source code representation

based on multi-head attention mechanism. SCRMHA converts

a source code snippet into an AST, then splits the AST into

small statement trees and encodes them into statement tree

vectors, and finally, uses a multi-head attention mechanism

to get the vector features of the entire code snippet. Finally,

the characteristics of source code snippets are applied to

code classification and code clone to evaluate SCRMHA.

Experimental results show that SCRMHA performs better than

traditional source code representation. The proposed method

can effectively parallel process the features of the code.

SCRMHA takes more time than ASTNN and the complexity

is about 1/3 of ASTNN. The proposed method can effectively

capture the syntax and semantic information in the code, and

can well represent the features of the source code. The future

can be optimized by adjusting the number of heads of multi-

head attention mechanisms and increasing industrial datasets.
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