
Systematic Analysis of Learning-Based Software Fault Localization

Ya Zou1, Hui Li1,*, Dongcheng Li2, Man zhao1, and Zizhao Chen3
1School of Computer Science, China University of Geosciences, Wuhan, China

2Department of Computer Science, California State Polytechnic University - Humboldt, Arcata, USA
3Department of Computer Science, University of Texas at Dallas, Richardson, USA

zouya@cug.edu.cn, huili@vip.sina.com, dl313@humboldt.edu, zhaoman@cug.edu.cn, zizhao.chen2@utdallas.edu
*corresponding author

Abstract—This paper reviews the evolution of learning-
based software fault localization methods, examining their
benefits, challenges, and prospective developments in
practical applications. We analyze the limitations of
traditional methods and provide an in-depth discussion of
learning-based fault localization approaches, covering the
application of supervised, unsupervised, and reinforcement
learning techniques in software fault localization.
Furthermore, we explore key issues in current research and
future research directions, and analyze threats that could
impact the effectiveness of the research. In conclusion, we
summarize the current status and future prospects of these
methods, along with our perspective on the forthcoming
advancements in this field.

Keywords-software fault localization; learning based;
suspicious code; survey

1. INTRODUCTION

When encountering software errors, programmers often invest
significant time and effort in attempting to reproduce,
understand, and fix these errors [1][2]. Fault localization in
software systems has always been a key issue in the field of
software engineering [3]. Existing fault localization
techniques encompass various traditional methods [4][5].
Print Debugging involves inserting print statements to
monitor program execution by outputting variable values and
states. Although simple, this approach becomes time-
intensive in complex, large-scale systems. Breakpoint
Debugging allows developers to pause program execution at
specific locations, providing detailed inspection. It offers
greater control but can be laborious during debugging. Static
Analysis inspects source or binary code for potential errors,
detecting common issues like unused variables or memory
leaks. For example, FindBugs [6] is an open-source Java static
analysis tool and has experience in production environments.
FindBugs evaluates which types of defects can be effectively
detected with relatively simple techniques, and aids
developers in understanding how to integrate these tools into
software development; Checkstyle [7] is a development tool
that helps developers write Java code that adheres to coding
standards. It automates the process of checking Java code,
thereby freeing humans from this monotonous but important
task. This makes it highly suitable for projects that wish to

enforce coding standards [8]. However, it may lack accuracy
for dynamic problems or highly complex systems.
Traditional methods often rely on rules, manual experience,
and static analysis, but perform poorly in dealing with
complex, large-scale, and highly dynamic systems. As
machine learning technology rapidly advances, learning-
based approaches to software fault localization are
increasingly coming into focus. Leveraging the strengths of
vast data and learning algorithms, these methods achieve more
precise and efficient software fault localization.
According to our repository, Figure 1 shows the number of
papers related to learning-based software fault localization
published in top journals and leading conferences focusing on
software engineering from 2010 to November 2023. These
journals and conferences include IEEE Transactions on
Software Engineering, ACM Transactions on Software
Engineering and Methodology, International Conference on
Software Engineering, ACM International Symposium on
Foundations of Software Engineering, and ACM International
Conference on Automated Software Engineering. This trend
supports the view that learning-based software fault
localization is not only an important research topic but has
also been widely discussed and studied in top software
engineering journals and conferences over the past decade.

Figure 1. Papers on software fault localization from 2010 to

November 2023

This paper first reviews the limitations of traditional fault
localization methods, such as the challenges of locating faults
in large-scale systems, over-reliance on manual expertise, and
inadequate adaptation to system dynamics. Following that, we
explore in depth the learning-based fault localization methods,

0
1
2
3
4
5
6
7

15 16 17 18 19 20 21 22 23N
um

be
r o

f P
ub

lic
at

io
ns

Year

478

2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR)

2835-2823/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSSR61934.2024.00068

encompassing the application of techniques like supervised
learning, unsupervised learning, and reinforcement learning in
software fault localization. We evaluate the advantages and
limitations of these methods and discuss their application in
real-world scenarios.
The remainder of this paper is organized as follows: We first
provide an in-depth exploration of learning-based fault
localization methods and elucidate their principles and
performance in Section 2. In Section 3, critical topics and
research domains, including evaluation metrics, fault
localization tools, and datasets, are extensively discussed to
comprehensively examine their impact on fault localization
research. Section 4 focuses on potential challenges that may
affect the credibility and validity of the study, evaluating
limitations in drawing research conclusions. The final chapter,
concluding the entirety of this paper, summarizes the research
findings, presents conclusions, and explores future directions
for further study.

2. LEARNING-BASED SOFTWARE FAULT LOCALIZATION

Learning-based approaches to software fault localization
present an innovative and effective solution to overcome the
constraints of traditional methods in managing complexity
and diversity. In this chapter, we systematically examine the
application of learning algorithms in fault localization,
encompassing subfields such as supervised learning,
unsupervised learning, semi-supervised learning,
reinforcement learning, and transfer learning.

2.1. Supervised Learning Methods

In recent years, supervised learning [9] methods have been
widely applied in the field of software fault localization,
significantly improving the accuracy of fault detection and
prediction. The fundamental principle of supervised learning
is to learn from a labeled training dataset and generate a
model, which is then used to predict unknown data [10].
Within the realm of fault localization tasks, supervised
learning has the capacity to uncover latent associations
between program characteristics and errors, thus efficiently
pinpointing potential error sites.

2.1.1. Machine Learning-Based Methods

These methods utilize machine learning models, such as
Support Vector Machines (SVM), clustering algorithms, etc.,
for software fault localization. They integrate supervised or
unsupervised learning techniques, extracting information
from program execution or static features, and build models
to predict and localize potential fault locations.
Wu et al. [11] proposed a direct fault localization method,
combining Gaussian Mixture Models (GMM) and Support
Vector Machines (SVM). This method initially preprocesses
the training data using a GMM-based clustering algorithm,
then improves the learning capability of SVM by replacing its
constant penalty factor with two adjustable parameters,
revealing the relationship between test case coverage
information and execution results. By comparing its

efficiency with other techniques on the Siemens Suite, the
study shows that this method significantly improves
localization accuracy in both single and multiple fault
scenarios, without incurring additional testing costs.
Roychowdhury and Khurshid [12] proposed a new method for
fault localization using feature selection techniques in
machine learning. Every additional failure or successful run
can provide a plethora of distinct information, which can help
locate errors in the code. Statements with the greatest diversity
of feature information can point to the most suspicious lines
of code. This method outperforms the most advanced fault
localization methods in most subject programs in the Siemens
Suite.
Shaikh et al. [13] proposed a software fault localization
method that utilizes a subset of dynamic invariants as features,
combined with supervised learning techniques. This method
focuses on extracting runtime information during program
execution and possible static features in the source code to
identify fault locations. These features are used to train
supervised learning models to capture the association between
erroneous and normal states. After training, the model can be
employed to predict fault locations in unfamiliar data. By
integrating subsets of dynamic invariants with other features,
this method has made significant progress in enhancing the
accuracy of fault localization.
Liang et al. [14] proposed a fault localization system named
CAST, which utilizes deep learning technology and custom
program abstract syntax trees (ASTs) to automatically and
efficiently locate potential software bug source files. The
system achieves this by extracting lexical semantics from bug
reports (such as words) and source files (e.g., method names),
as well as program semantics (such as abstract syntax trees,
ASTs). CAST also utilizes custom ASTs to enhance the Tree-
based Convolutional Neural Network (TBCNN) model,
which can distinguish between user-defined methods and
system-provided methods, and reflect their contributions to
causing defects. Additionally, the custom AST groups
syntactic entities with similar semantics and removes those
with little or redundant semantics to enhance learning
performance.

2.1.2.Deep Learning-Based Fault Localization Methods

These methods utilize deep learning models, such as
Convolutional Neural Networks (CNN) and enhanced neural
networks, for software fault localization. They focus on using
neural network architectures to process software code,
features, and contextual information, aiming to improve the
accuracy and efficiency of fault localization.
Xiao et al. [15] proposed a deep learning-based model named
DeepLoc, consisting of an enhanced Convolutional Neural
Network (CNN) that takes into account bug fix time and
frequency, along with word embedding and feature detection
technologies. DeepLoc uses word embeddings to represent
words in bug reports and source files, preserving their
semantic information, and employs various CNNs to detect
their features. Research results show that DeepLoc, compared

479

to traditional CNNs, improved the MAP by 10.87% to 13.4%.
In terms of Accuracy@k, MAP, and MRR, DeepLoc
outperforms the current four most advanced methods
(DeepLocator, HyLoc, LR+WE, and BugLocator) in a shorter
computation time.
Li et al. [16] proposed a deep learning method named
DeepFL, which uses multiple dimensions of fault diagnostic
information to predict potential fault locations. Research
results indicate that DeepFL significantly outperforms the
state-of-the-art trap/FLUCCS methods in fault localization
(for instance, locating over 50 faults in the Top-1 category).
Furthermore, DeepFL exhibits high efficiency in making
cross-project predictions.
Li et al. [17] proposed a deep learning-based fault localization
method named FixLocator. FixLocator can identify erroneous
statements within one or several methods; its method-level
fault localization model zeroes in on fixed methods, while its
statement-level model attends to jointly fixed statements. The
correct execution of this learning pattern can promote each
other, using cross-stitch units for soft sharing of model
parameters, allowing the effects of MethFL and StmtFL to
propagate mutually. Furthermore, the study explores a new
feature for fault localization – co-change statements, and
employs a graph-based convolutional network to integrate
different types of program dependencies. Experiments prove
that, compared to the state-of-the-art statement-level FL
baseline, FixLocator achieved an improvement of 26.5% to
155.6% in localizing CC fixed statements.

2.1.3.Learning-to-Rank Based Fault Localization Methods

These methods rely on learning-to-rank techniques, using
ranking algorithms or models to arrange code elements (such
as methods, statements, etc.) in order of likelihood, to
determine the probable location of faults. They combine
learning and ranking phases, sorting and locating faults
through trained models or algorithms.
B. Le et al. [18] proposed a new fault localization method,
named Savant, that adopts a learning-to-rank strategy. It
utilizes potential invariant differences and suspicion scores as
features, ranking methods based on these features to assess
their likelihood of being the root cause of faults. Savant
comprises four key steps: method clustering and test case
selection, invariant mining, feature extraction, and method
ranking. After these four steps, Savant produces a brief ranked
list, highlighting methods that are likely to harbor bugs.
Evaluation results indicate that, in the top 1, 3, and 5 positions
of the generated ranking list, Savant correctly identified 63.03,
101.72, and 122 erroneous methods, respectively. Compared
to several state-of-the-art spectrum-based fault localization
baselines, Savant achieved an increase of 57.73%, 56.69%,
and 43.13% in the number of successfully localized faults at
the top 1, 3, and 5 positions, respectively.
Kim et al. [19] proposed a new fault localization technique,
PRINCE, which is a learning-to-rank based method. PRINCE
utilizes Genetic Programming (GP) to combine multiple sets
of localization input features previously studied

independently. It encompasses dynamic features, including
Spectrum-Based Fault Localization (SBFL) and Mutation-
Based Fault Localization (MBFL) techniques. Additionally, it
employs static features, such as dependency information and
the structural complexity of program entities. GP combines all
these pieces of information to train a ranking model for fault
localization. Empirical evaluation results on 65 real faults
from CoREBench, 84 artificial faults from SIR, and 310 real
faults from Defects4J indicate that PRINCE significantly
outperforms the most advanced SBFL, MBFL, and learn-to-
rank techniques. On average, PRINCE only needs to inspect
2.4% of the executed statements to locate faults, showing a
4.2-fold and 3.0-fold increase in precision compared to SBFL
and MBFL, respectively.
Sohn and Yoo [20] expanded SBFL by incorporating code and
change metrics previously studied in the context of defect
prediction, such as size, age, and code changes. This work
utilizes the suspicion values from existing SBFL formulas and
these source code metrics as features, applying two learning-
to-rank techniques: Genetic Programming (GP) and Linear
Rank Support Vector Machines (SVM). They used 210 real-
world faults from the Defects4J repository, conducted 10-fold
cross-validation, and evaluated method-level fault
localization. GP with additional source code metrics ranked
the faulty methods at the top in 106 out of 210 faults, and
achieved similar results in 173 faults. This work significantly
improved the state-of-the-art SBFL formulas, with the best
formula ranking 49 and 127 faults at the top, respectively.
Xuan and Monperrus [21] introduced MULTRIC, a learning-
based fault localization method that integrates multiple
ranking metrics for efficient fault localization. The method
unfolds in two key stages: learning and ranking. By learning
from both faulty and non-faulty code, MULTRIC constructs a
ranking model. When a new fault arises, it uses the learned
model to calculate the final ranking. After empirical
comparison with four extensively studied metrics and three
recently proposed metrics, results indicate that MULTRIC is
more effective in fault localization than advanced measuring
methods like Tarantula, Ochiai, and Ample.

2.1.4.Coverage-Based Fault Localization Methods

These methods use program coverage information, typically
capturing this information through program representations or
graphs, and apply various techniques and models to analyze
and infer fault locations.
Lou et al. [22] introduced Grace, a novel coverage-based fault
localization technique. This technique makes full use of
detailed coverage information and graph-based
representational learning. Firstly, it introduces a new graph-
based representation method, encapsulating exhaustive
coverage information and the fine-grained structure of the
code into a graph. Subsequently, Grace utilizes a gated graph
neural network to learn valuable features from the graph-
based coverage representation and ranks program entities in a
list format. Evaluations on the widely-used benchmark
Defects4J (V1.2.0) show that Grace's performance

480

significantly surpasses that of the most advanced coverage-
based fault localization methods. The study also reveals that
Grace learns fundamental features from coverage information,
which complements the information used by current learning-
based fault localization methods.

2.1.5.Causal Inference-Based Fault Localization Methods

These methods integrate causal inference with machine
learning, employing statistical causal reasoning and machine
learning models for inferring and locating software faults.
They consider causal relationships and reason about code
variables and conditions to predict the probable location of
faults.
Kucuk et al. [23] proposed UniVal, a new software fault
localization technique. This method utilizes causal inference
techniques and machine learning, integrating information
about predicate outcomes and variable values. UniVal uses a
random forest learner as a supervised learning model to
localize faults in various elements of a program, enabling a
more precise assessment of the true fault-inducing effects of
program statements. This is a novel fault localization
technique based on statistical causal inference methods,
combining value-based and predicate-based fault localization
approaches by converting predicates into assignment
statements. UniVal utilizes a machine learning model to
minimize bias in estimates and assess the average causal effect
of program variables, without needing to actually change the
program or its execution. Currently, UniVal can handle
numerical, Boolean, categorical, and string values.
Experimental results show that UniVal performs better than
several competing techniques.
Figure 2 shows the distribution of papers across supervised
learning methods in our repository. Machine learning-based
papers are the most predominant, accounting for 31% of all
papers, followed by deep learning-based at 23%, and then
causal inference-based at 8%. Coverge-based are the least,
comprising only 7% of the total.

Figure 2. Distribution of papers across supervised learning

methods

In summary, historical research has offered a diverse array of
supervised learning approaches for software fault localization,
spanning from traditional SVMs to advanced deep learning

models, and even innovative methods incorporating causal
inference. These techniques have significantly contributed to
enhancing localization precision and adapting to a variety of
projects and datasets. Future studies can delve deeper into the
generalizability, practicality, and real-world project
applications of these methods, aiming to identify the most
appropriate technique for specific contexts.

2.2. Unsupervised Learning Methods

Unsupervised learning does not rely on labeled data, but
instead seeks hidden patterns or intrinsic structures, such as
anomaly detection and clustering. Clustering is one of the
most commonly used unsupervised learning methods,
dividing similar objects into groups or clusters to uncover the
data's intrinsic structure. In fault localization tasks, clustering
methods can identify anomalous code lines or modules and
differentiate them from normally functioning parts, as in the
k-means clustering and similarity-based method proposed by
An [24]. At the start of testing, K-Means clustering is
performed on the test case set, and the filtered test cases can
cover more execution information. Subsequently, for test
cases with failed execution results, test cases with similar
execution information are filtered to better highlight the error
information in the failed test cases. Experiments on the
Defects4J dataset show that this method can be combined with
other techniques to improve its efficiency and is well
compatible with traditional software fault localization
algorithms, achieving an average improvement rate of 13.37%
in 8 scenarios.
Zhang et al. [25] proposed a set of anomaly detection
techniques based on prefix trees, with the prefix tree model
serving as a compact, lossless data representation of execution
traces. Furthermore, the prefix tree distance metric provides
an effective heuristic for guiding the search for closely related
execution traces. In density-based algorithms, using prefix
tree distance confines the k-nearest neighbors search to a
small subset of nodes, significantly reducing computation
time without sacrificing accuracy. Experimental studies show
that in the automatic identification of software faults, methods
guided by prefix trees and prefix tree distance significantly
speed up the process.

2.3. Semi-Supervised Learning Methods

Although supervised learning is effective in fault localization,
the problem of requiring a large amount of labeled data still
exists. Semi-supervised learning fully utilizes both labeled
and unlabeled data, employing self-training on unlabeled data
or generative adversarial networks with minimal labeled data
for precise training.
Wei et al. [26] points out that although supervised learning is
effective in fault localization, the issue of needing a large
amount of labeled data still exists. Semi-supervised learning
fully exploits both labeled and unlabeled data, using self-
training on unlabeled data or generative adversarial networks
with a small amount of labeled data for precise training.
Furthermore, the algorithm was validated on the Siemens

Based on Machine
Learning Models

31%

Deep Learning-
Based
23%

Learning-to-Rank
Based
31%

Coverage-Based
7%

Causal Inference-Based

Based on Machine Learning Models Deep Learning-Based

Learning-to-Rank Based Coverage-Based

Causal Inference-Based

481

Suite dataset. By comparison with traditional supervised
learning algorithms, the effectiveness of semi-supervised
learning algorithms in software fault localization was
demonstrated.
Zhu et al. [27] proposed the first semi-supervised bug
localization model, BL-GAN, and introduced a promising
generative adversarial network into BL-GAN, which
generates file paths by searching the project directory tree
instead of comparing all code file contents, thereby
constructing synthetic error correction records that closely
mimic reality, For handling error reports, BL-GAN utilizes an
attention-based Transformer architecture to capture semantic
and sequential information, and to capture proprietary
structural information in code files, BL-GAN uses a novel
multi-layer graph convolutional network to process source
code in a graphical view. Extensive experiments on large-
scale real-world datasets demonstrate that the BL-GAN model
significantly outperforms the most advanced techniques in all
evaluation metrics.
Yan et al. [28] proposed an entropy-based framework filter to
filter unlabeled test cases, wherein statement-based entropy
and testsuite-based entropy were constructed to measure the
localization uncertainty of a given test set. Compared to a
threshold value, unlabeled test cases with lower statement-
based entropy or testsuite-based entropy are selected. Based
on this, an integrated feature strategy based on statement
entropy and testsuite entropy was presented to calculate the
suspiciousness of statements. The efficiency of the filter was
evaluated through six open-source programs and three
spectrum-based fault localization methods. Results indicated
that the fault localization efficiency using the effilter strategy,
based on statement entropy and testsuite entropy, improved by
18.8% and 16.5%, respectively, compared to not using the
effilter strategy. The filter based on statement entropy and
testsuite entropy can improve fault localization in scenarios
lacking test oracles, and has a certain enhancing effect on fault
localization in practical applications.

2.4. Reinforcement Learning Methods

Reinforcement learning, as a method that learns through
interaction with the environment, has shown significant
potential in recent applications of software fault localization.
The objective of reinforcement learning methods is to learn a
policy that guides actions to maximize long-term rewards.
Chakraborty et al. [29] proposed a bug localization method
based on reinforcement learning named RLOCATOR, which
is an RL-based software fault localization approach. The
innovative aspect of RLocator lies in its use of RL for error
localization, including the formulation of the error localization
process into an MDP, and its comparison with two state-of-
the-art bug localization tools (FLIM and BugLocator), and
evaluations indicate that RLocator significantly outperforms
these two methods.
Moran et al. [30] proposed a method for automatically
locating faults in reinforcement learning programs. The
method, termed SBFL4RL, scrutinizes multiple executions to

identify internal states that are often detrimental to program
performance. Locating these states can aid testers in
understanding known faults and even in detecting unknown
faults. SBFL4RL underwent validation in two case studies,
successfully pinpointing the injected faults. Preliminary
results indicate that faults in reinforcement learning programs
can be automatically located, and there is room for further
research.
Li et al. [31] developed DEEPRL4FL, a deep learning-based
fault localization approach, that frames fault localization as an
image pattern recognition challenge, and pinpoints errors at
both statement and method levels. DEEP RL4FL
accomplishes this using cutting-edge code coverage
representation learning and data dependency reinforcement
learning for program statements. This method integrates two
forms of reinforcement learning based on dynamic info in
code coverage matrices with code representation learning
focused on static info from commonly suspect source code.
The approach draws inspiration from crime scene
investigations, where detectives scrutinize crime scenes
(failed test cases and statements) and relevant individuals
(dependent statements), along with usual suspects with a
history of similar offenses (analogous error codes in the
training data). Regarding code coverage info, DEEP RL4FL
initially sorts test cases and flags statements indicating errors,
anticipating the model to discern patterns that distinguish
between erroneous and correct statements/methods. In terms
of inter-statement dependencies, it considers not only the
statements themselves but also their data dependencies on
other statements and data flows during execution. Finally, the
code coverage matrix, the data dependencies between
statements, and the vector representation of source code are
combined and used as input for a classifier built with
convolutional neural networks to detect faulty
statements/methods.

2.5. Transfer Learning Methods

Transfer learning can utilize previously acquired knowledge
and experience to solve new problems, enabling models to
effectively address issues like low utilization of training data
and high data annotation costs. By applying acquired
knowledge to new, unlabeled software fault localization
problems, transfer learning methods can significantly enhance
the efficiency and accuracy of fault localization.
Meng et al. [32] introduced TRANSFER, a novel approach
that leverages deep semantic features and harnesses
knowledge from open-source data to enhance fault
localization and program repair. The first step involves
creating two extensive open-source bug datasets and
developing 11 BiLSTM-based binary classifiers and a
BiLSTM-based multi-classifier to discern deep semantic
features of statements for fault localization and program
repair. Following that, a blend of semantic, spectrum-based,
and mutation-based features was employed, utilizing an MLP-
based model for fault localization. Finally, semantic-based

482

features were used to rank repair templates in the context of
program repair.
Alhuman [33] proposed a model to generate counterfactual
explanations for decisions made by fault localization models.
The construction of a nonlinear neural network model enables
the approximation and propagation representation of input
information through neural systems. This indicates a high
proficiency in transfer learning, even with minimal training
data. The proposed XFL ensures transparent decision-making
without compromising the model's performance. The
proposed XFL ranks software program statements based on
potential vulnerability scores approximated from training
data. The model's performance is further assessed using
various metrics, such as the number of evaluated statements,
confidence in fault localization, and Top-N evaluation
strategies.
Huo et al. [34] introduced a deep transfer learning approach
for bug localization across different projects. TRANP-CNN,
the proposed method, harnesses transferable semantic features
from the source project and leverages the target project’s
labeled data for efficient cross-project error localization. This
performance notably surpasses the cutting-edge deep
learning-based bug localization solutions and several other
advanced alternatives, taking into account a variety of
standard evaluation metrics.
Zhu et al. [35] introduced an adversarial approach to transfer
learning for bug localization, centered on the cross-project
transfer of shared characteristics (namely, public
information). COOBA employs a shared encoder to glean
indicative public information from bug reports across
projects, and utilizes distinct feature extractors for each
project to extract private information from code files. COOBA
integrates adversarial learning to guarantee efficient
extraction of commonly shared public information across
various projects. Comprehensive testing on four large-scale
real-world datasets shows that the proposed COOBA method
significantly surpasses current technological benchmarks.
Figure 3 shows the distribution of papers across all categories
in our repository. Supervised learning-based papers are the
most predominant, accounting for 52% of all papers, followed
by transfer learning-based at 16%, and then both
reinforcement learning and semi-supervised learning at 12%.
Papers categorized under unsupervised learning are the least,
comprising only 8% of the total.

Figure 3. Distribution of papers across all categories

As a software fault localization technique, learning-based
methods, with their immense potential and wide
applicability, have gradually become a focus of research.
However, these methods have their own strengths and
limitations, and are suited to different problems and
scenarios. In the future, with the emergence of new
technologies such as deep learning and transfer learning, we
anticipate more innovations and breakthroughs in learning-
based fault localization methods.

3. IMPORTANT ISSUES AND RESEARCH AREAS

This section focuses on the core issues and future research
directions in the field of software fault localization. We
thoroughly examine the selection and precision of assessment
metrics, evaluate the merits and limitations of existing
software fault localization tools and methods, and suggest
approaches for their integration to boost efficacy. Moreover,
we critically review current datasets, highlighting their
limitations and stressing the need to create datasets that are
more representative and practical. In conclusion, we spotlight
nascent research domains within software fault localization,
probing solutions for large-scale, intricate systems, the
synergistic application of machine learning in fault
localization, and strategies for precisely identifying faults in
specialized domains. This section aims to provide an
exhaustive review of these issues and offer guidance for
upcoming research avenues, committed to propelling cutting-
edge investigations and innovative advancements in software
fault localization.

3.1. Evaluation Metrics

Measuring the effectiveness of fault localization methods
using relevant formulas or scores is crucial as it provides
objective quantitative metrics to assess the performance and
accuracy of the localization algorithms. Such metrics disclose
the efficacy of fault localization methods in detecting and
pinpointing program errors, offering developers dependable
feedback. The indispensability of this quantitative approach
stems from its capacity to assist development teams in
pinpointing the most efficient fault localization methods,
guiding the judicious distribution and enhancement of
resources, thus expediting the fault repair process. Comparing
the scores or metrics of various methods enables the
identification of which techniques are more reliable or apt for
addressing certain types of problems in specific scenarios.
Consequently, these metrics serve not just as an objective
assessment of the localization algorithms' effectiveness but
also furnish vital directions and strategies for teams to
enhance and refine localization methods. Table 1 presents an
overview of Metrics and Papers utilizing these metrics. It
includes details such as the names of the metrics, brief
descriptions of each metric, and information on which papers
have utilized these metrics.
The following are some commonly used evaluation metrics:

Supervised Learning, 52%

Unsupervised Learning, 8%
Semi-supervised Learning,

Reinforcement Learning,

Transfer Learning, 16%

Supervised Learning Unsupervised Learning

Semi-supervised Learning Reinforcement Learning

Transfer Learning

483

Top N: Top N Rank refers to the number of errors associated
with the files ranked in the top N in the returned results. Based
on previous research [36][37][38], three values for N are
considered: 1, 5, 10. For an error report, if at least one file that

should be fixed is included in the top N query results, it
indicates that the error has been located. The higher the value
of this metric, the better the performance of error localization
[39].

Table 1. Metrics
Name Formula Paper Using The Metrics

MRR [37,40,41,42]

MAP � [20,41,42]

Precision rate [7,25,43,44]

Recall rate [7,25,43,44]

F-measure [7,25,43]

MFR [16,31,32,45,46,47,48]

MAR [16,31,32,45,46,47,48]

� MRR: MRR (Mean Reciprocal Rank) is a metric used to
assess the process of generating potential response lists
for queries. It measures by calculating the reciprocal of
the rank of the first correct answer in the results of a
query. The mean reciprocal rank then represents the
average of the reciprocal ranks across a set of query
results.

The higher the MRR value, the better the performance
of the fault localization.

� MAP: MAP (Mean Average Precision) is a single metric
for the quality of information retrieval [49], particularly
suitable for cases where one query may involve multiple
relevant documents. For a single query, Average
Precision (AvgP) is the average of precision values
obtained for that query. The calculation of precision
values is as follows:

In this formula, j represents the ranking, M is the number
of retrieved instances, and pos(j) indicates whether the
instance at rank j is relevant. P(j) is the precision at a
given cut-off rank j, defined as follows:

The Mean Average Precision for a set of queries is the
average of the average precision values of all queries. In
fault localization, a bug may be associated with multiple
files.

� Precision rate: Precision rate is calculated as follows:

True positive refers to the number of identified code
segments that are defective and are indeed faulty, while
false positive denotes the number of code segments
incorrectly identified as defective when they are actually
free of faults. Precision rate is utilized in software fault
localization to measure the accuracy and reliability of
identifying faulty code segments.

� Recall rate: Recall rate measures the coverage of a
localization method in identifying actual faults. This
metric represents the probability of successfully
identifying real faults, indicating the proportion of
correctly identified faults among all actual faults. The
formula for Recall rate is:

The Recall rate assesses the capability of fault
localization methods in discovering actual faults. In the
context of software fault localization, a higher Recall
rate signifies the method's effectiveness in capturing
and identifying genuine faults while minimizing
undetected faults. This metric is crucial for evaluating
the comprehensiveness and efficacy of fault
localization techniques.

� F-measure: F-measure is a comprehensive evaluation
metric that combines information from Precision and
Recall. It quantifies the balance between Precision and
Recall, offering an assessment of the overall
performance of fault localization methods. The formula
for F-measure is:

In software fault localization, the F-measure serves as a
holistic evaluation metric to assess the balance between
accuracy and coverage of a localization method. A
higher F-measure value indicates a well-balanced
approach between precision and recall, crucial in the

484

selection and evaluation of fault localization techniques.
It stands as a significant indicator for evaluating the
overall performance of methods, guiding improvements
and optimizations in fault localization techniques.

� MFR: The formula for MFR is as follows:

N is the total number of faults. is the rank of the highest
faulty statement in the i-th fault. This formula represents
MFR as a metric for a project, which calculates the mean
of the highest faulty statement's rank for each fault.

� MAR: The formula for MAR is as follows:

N is the total number of faults. is the number of faulty
statements in the ii-th fault. is the rank of the j-th faulty
statement in the i-th fault. This formula represents MAR
as a metric for a project, which calculates the average
rank of all faulty statements for each fault, and then
computes the mean of these average ranks for all faults.

These evaluation metrics play distinct roles in the realm of
software fault localization. Top N focuses on the quantity of
error files ranked highly, while MRR delves into the ranking

of correct answers within query results. MAP suits scenarios
involving multiple relevant documents in information
retrieval. Precision and recall strike a balance between
performance and accuracy, while the F-measure amalgamates
both. MFR and MAR concentrate more on the efficiency and
degree of improvement in inspecting code statements. When
determining performance, choosing the appropriate metric
relies on specific objectives and research contexts to ensure
that the evaluation aligns with the desired outcomes. Each
metric emphasizes different facets of fault localization
methods, hence their selection should be context-dependent to
comprehensively assess the performance and potential
enhancements of fault localization methods.

3.2. Software Fault Localization Tools

One challenge faced by many empirical studies in software
fault localization is the need for appropriate tools to support
automatic or semi-automatic data collection and suspicion
calculation. Table 2 provides a list of commonly used tools,
including their names, brief descriptions and which papers
have used these tools. All these seven tools can be obtained by
contacting their authors.

Table 2. Summary of tools used in the fault localization studies

Name Brief Description Paper Using The Tool

NP-CNN Convolutional Neural Networks blend natural language and source code data to pinpoint
potential error sources in software bug reports automatically.

[37]

DNNLOC Employing Deep Neural Networks and Information Retrieval methods to facilitate the
automatic identification of potential error sources in software bug reports.

[42]

DeepLocator
Leveraging deep learning models with semantic insights to boost the precision of
automatically linking error source code with software bug reports, expediting the bug
resolution process.

[44]

CAST Utilizing deep learning and bespoke Abstract Syntax Trees to amalgamate semantic details
from bug reports and source code, pinpointing potential error sources automatically.

[50]

HyLoc Autoencoders and vector space models are applied to discern potential bug files linked to
specific bug reports.

[40]

DeepLOC Word embeddings represent semantically informative words in error reports and source files,
with various CNNs employed to explore their features

[15]

BugFix Tools for program debugging powered by machine learning techniques. [51]

� NP-CNN: A novel Convolutional Neural Network, NP-
CNN, utilizes lexical and program structure information
to learn unified features from the natural language and
source code of programming languages, thereby
automatically locating potential bug source code based
on bug reports.

� DNNLOC: DNNLOC is a novel approach that combines
Deep Neural Networks (DNN) with rVSM (an
Information Retrieval (IR) technique). rVSM gathers
text similarity features between bug reports and source
files. DNN is used to learn connections between terms
in error reports and potentially varying code tokens and
terms in source files.

� DeepLocator: DeepLocator consists of an enhanced
CNN (Convolutional Neural Network) proposed in the

study that considers bug-fixing experience, a new rTF-
IDuF method, and pre-trained word2vec technology. It
enhances bug location performance by fully utilizing
semantic information.

� CAST: CAST utilizes deep learning and custom
program Abstract Syntax Trees (AST) for the automatic
and effective localization of potential bug source files.
Specifically, CAST extracts lexical semantics from bug
reports (e.g., words) and source files (e.g., method
names) as well as program semantics (e.g., AST) from
source files. Furthermore, CAST uses a customized AST
to enhance the Tree-based Convolutional Neural
Network (TBCNN) model, which differentiates between
user-defined methods and system-provided methods to
reflect their contributions to defects. Additionally, the

485

custom AST groups syntactic entities with similar
semantics and trims those with less or redundant
semantics to improve learning performance.

� HyLoc: HyLoc is a novel approach that integrates Deep
Neural Networks (DNN) with Information Retrieval
(IR) technique rVSM. rVSM gathers textual similarity
features between bug reports and source files. DNN is
employed to learn associations between terms in error
reports with different code tokens and terminologies in
source files and documents, based on their frequency of
occurrence in the reports and error files. HyLoc,
combining functionalities built on DNN, rVSM, and
project error repair history, achieves higher accuracy
than state-of-the-art IR and machine learning
techniques.

� DeepLOC: DeepLoc is built around an advanced
Convolutional Neural Network that accounts for the
timeliness and frequency of bug fixes, complemented by
word embedding and feature detection techniques. It
uses word embeddings for capturing the semantics of
words in bug reports and source files and leverages
different CNNs for feature extraction.

� BugFix: BugFix integrates machine learning concepts,
enabling it to automatically learn from new debugging
scenarios and bug fixes over time. This allows for more
effective prediction of the most relevant bug fix
suggestions for newly encountered debugging scenarios.
The tool takes into account the static structure of
statements, dynamic values used in successful and failed
runs in those statements, and interesting value mapping
pairs related to the statements.

3.3. Dataset

� Defects4J: Defects4J [52] is a widely used dataset for
software defect research, comprising a series of real Java
projects, each with multiple versions, some of which
contain known defects. The uniqueness of this dataset
lies in providing verifiable and reproducible real-world
program defects, enabling researchers to assess the
performance and accuracy of fault localization methods.
Yiling Lou conducted an evaluation of Grace using both
Defects4J (V1.2.0) and Defects4J (V2.0.0).

� Eclipse Platform UI: A graphical user interface
provided by the Eclipse development platform,
designed for software development purposes.

� AspectJ: A specialized extension for the Java
programming language, introducing aspect-oriented
programming capabilities.

� JDT: An integrated collection of Java development
tools specifically designed for the Eclipse platform.

� Tomcat: A widely-used open-source Servlet container
that facilitates the deployment and running of Java
Servlet and JSP technologies.

� Birt: An open-source solution for generating and
publishing reports, offering capabilities for building and
customizing reports via the Eclipse platform.

� SWT: A comprehensive open-source widget toolkit
designed for Java applications.

Table 3 offers an inventory of Datasets and Papers that utilize
these datasets. It comprises the names of the datasets, brief
descriptions of each dataset, and information on which papers
have utilized these datasets.

Table 3. Dataset
Dataset Brief Description Paper using the dataset

Defects4J
a software testing dataset designed for software defect research, comprising multiple
projects with known bugs and corresponding test cases.

[17,20,22,23,32,53,54,55,56,57,58]

Eclipse UI
a user interface of a development
platform for Eclipse

[40,42,44]

JDT a suite of Java development tools for Eclipse [40,42,44,59]

SWT an open source widget toolkit for Java. [40,42,44]

Tomcat An open-source Servlet container used for running Java Servlets and JSP technologies [40,42,44,60,61,62]

AspectJ
an aspect-oriented programming extension for
Java programming language

[40,42,44,63,64,65,66,67]

Birt
An open-source reporting tool for creating and deploying reports, supporting construction
and customization through the Eclipse IDE.

[51,68]

4. THREATS TO VALIDITY

During our comprehensive review study, we identified
potential factors that could undermine the reliability and
applicability of our research findings. Initially, the process of
selecting literature and gathering data could exhibit some

selection bias, potentially impacting the breadth and integrity
of our analysis. We endeavored to include a diverse array of
sources and studies comprehensively, but there remains a
possibility that certain critical research works were
inadvertently omitted.

486

Moreover, the reliability and accuracy of certain publications
could fluctuate, necessitating careful consideration of how
these variations might influence our findings. Additionally,
the methodologies and techniques employed in our study
might introduce specific constraints or limitations. Certain
approaches might be limited in scope, failing to encapsulate
every facet of the fault localization field comprehensively.
Furthermore, the currency and representativeness of the data
might impact the extent to which our results can be
generalized, particularly in rapidly advancing technological
areas. Additionally, the personal perspectives and biases of
our research team could have influenced the selection and
interpretation of the literature. Despite our efforts to remain
objective and impartial, it's important to acknowledge that
personal biases may still subtly influence the research process.
In an attempt to minimize these potential threats, we adopted
a multi-faceted approach, drawing from various sources and
perspectives, and aimed for a comprehensive coverage of
diverse research findings. Concurrently, we made concerted
efforts to interpret and cite literature objectively and
impartially while verifying the accuracy of our data.
Nevertheless, it is still necessary to be mindful of the potential
impact these threats could have on the interpretation and
generalizability of the research results.

5. CONCLUSION

This article reviews both traditional and learning-based
emerging methods in the field of software fault localization.
Through in-depth discussions of supervised, unsupervised,
semi-supervised, reinforcement, and transfer learning
methods, we demonstrate the advantages, limitations, and
applicable scenarios of each method in software fault
localization. After detailed discussions of key issues, research
domains, evaluation metrics, and datasets, we examined the
threats that could impact the reliability and effectiveness of
the research. Overall, despite certain limitations in the
research, it offers new insights and directions for future
research in software fault localization, and encourages further
exploration and innovation to advance the field.

REFERENCES

[1] Jones, J.A., Harrold, M.J. and Stasko, J., 2002, May.
Visualization of test information to assist fault
localization. In Proceedings of the 24th international
conference on Software engineering (pp. 467-477).

[2] Wong, W.E. and Debroy, V., 2010. Software Fault
Localization. Encyclopedia of Software Engineering, 1,
pp.1147-1156.

[3] Li, Y., Liu, P., Wong, W.E., Chau, N. and Hsu, C.W.,
2023. Alternative Ranking Distance Metrics for Fault-
Focused Clustering in Parallel Fault Localization.
International Journal of Performability Engineering,
19(10), p.633-643.

[4] Wong, W.E. and Tse, T.H., editors. Handbook of
software fault localization: foundations and advances.
John Wiley & Sons; 2023.

[5] Wong, W.E., Gao, R., Li, Y., Abreu, R. and Wotawa, F.,
2016. A survey on software fault localization. IEEE

Transactions on Software Engineering, 42(8), pp.707-
740.

[6] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler,
J.D. and Penix, J., 2008. Using static analysis to find
bugs. IEEE software, 25(5), pp.22-29.

[7] Zampetti, F., Mudbhari, S., Arnaoudova, V., Di Penta,
M., Panichella, S. and Antoniol, G., 2022. Using code
reviews to automatically configure static analysis tools.
Empirical Software Engineering, 27(1), p.28.

[8] Novak, J. and Krajnc, A., 2010, May. Taxonomy of static
code analysis tools. In The 33rd international convention
MIPRO (pp. 418-422). IEEE.

[9] Arya, A. and Malik, S.K., 2023. Software Fault
Prediction using K-Mean-Based Machine Learning
Approach. International Journal of Performability
Engineering, 19(2), p.133-143.

[10] Cunningham, P., Cord, M. and Delany, S.J., 2008.
Supervised learning. In Machine learning techniques for
multimedia: case studies on organization and retrieval
(pp. 21-49). Berlin, Heidelberg: Springer Berlin
Heidelberg.

[11] Wu, X., Zheng, W., Chen, J., Bai, H., Hu, D. and Mu,
D., 2018, December. A GMM and SVM Combined
Approach for Automatically Software Fault
Localization. In 2018 IEEE International Conference on
Progress in Informatics and Computing (PIC) (pp. 357-
363). IEEE.

[12] Roychowdhury, S. and Khurshid, S., 2011, November.
Software fault localization using feature selection. In
Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering (pp. 11-
18).

[13] Shaikh, A., Rizwan, S., Alghamdi, A., Islam, N.,
Elmagzoub, M.A. and Syed, D., 2022. A Learning-
Based Fault Localization Approach Using Subset of
Likely and Dynamic Invariants. Intelligent automation &
soft computing, 31(3).

[14] Liang, H., Sun, L., Wang, M. and Yang, Y., 2019. Deep
learning with customized abstract syntax tree for bug
localization. IEEE Access, 7, pp.116309-116320.

[15] Xiao, Y., Keung, J., Bennin, K.E. and Mi, Q., 2019.
Improving bug localization with word embedding and
enhanced convolutional neural networks. Information
and Software Technology, 105, pp.17-29.

[16] Li, X., Li, W., Zhang, Y. and Zhang, L., 2019, July.
Deepfl: Integrating multiple fault diagnosis dimensions
for deep fault localization. In Proceedings of the 28th
ACM SIGSOFT international symposium on software
testing and analysis (pp. 169-180).

[17] Li, Y., Wang, S. and Nguyen, T.N., 2022, November.
Fault localization to detect co-change fixing locations. In
Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 659-671).

[18] B. Le, T.D., Lo, D., Le Goues, C. and Grunske, L., 2016,
July. A learning-to-rank based fault localization
approach using likely invariants. In Proceedings of the
25th international symposium on software testing and
analysis (pp. 177-188).

[19] Kim, Y., Mun, S., Yoo, S. and Kim, M., 2019. Precise
learn-to-rank fault localization using dynamic and static
features of target programs. ACM Transactions on
Software Engineering and Methodology (TOSEM),
28(4), pp.1-34.

[20] Sohn, J. and Yoo, S., 2017, July. Fluccs: Using code and
change metrics to improve fault localization. In
Proceedings of the 26th ACM SIGSOFT International

487

Symposium on Software Testing and Analysis (pp. 273-
283).

[21] Xuan, J. and Monperrus, M., 2014, September. Learning
to combine multiple ranking metrics for fault
localization. In 2014 IEEE International Conference on
Software Maintenance and Evolution (pp. 191-200).
IEEE.

[22] Lou, Y., Zhu, Q., Dong, J., Li, X., Sun, Z., Hao, D.,
Zhang, L. and Zhang, L., 2021, August. Boosting
coverage-based fault localization via graph-based
representation learning. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering (pp. 664-676).

[23] Küçük, Y., Henderson, T.A. and Podgurski, A., 2021,
May. Improving fault localization by integrating value
and predicate based causal inference techniques. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE) (pp. 649-660). IEEE.

[24] An, D., Wang, S., Zhu, L., Yang, X. and Yan, X., 2022,
December. Prefilter: A Fault Localization Method using
Unlabelled Test Cases based on K-Means Clustering and
Similarity. In 2022 IEEE 22nd International Conference
on Software Quality, Reliability, and Security
Companion (QRS-C) (pp. 263-269). IEEE.

[25] Zhang, W., Bastani, F., Yen, I.L., Hulin, K., Bastani, F.
and Khan, L., 2012, October. Real-time anomaly
detection in streams of execution traces. In 2012 IEEE
14th International Symposium on High-Assurance
Systems Engineering (pp. 32-39). IEEE.

[26] Wei,Z., Xue,X., Xin,T., 2015. Research on Software
Fault Localization Based on Semi-Supervised Learning
Methods. Journal of Northwestern Polytechnical
University, 33(2),pp.332-336.

[27] Zhu, Z., Tong, H., Wang, Y. and Li, Y., 2022. BL-GAN:
Semi-supervised bug localization via generative
adversarial network. IEEE Transactions on Knowledge
and Data Engineering.

[28] Yan, X., Liu, B., Wang, S., An, D., Zhu, F., and Yang,
Y., 2021. Efilter: An effective fault localization based on
information entropy with unlabelled test cases.
Information and Software Technology, 134, p.106543.

[29] Chakraborty, P., Alfadel, M. and Nagappan, M., 2023.
RLocator: Reinforcement Learning for Bug
Localization.

[30] Morán, J., Bertolino, A., De La Riva, C. and Tuya, J.,
2023, July. Fault Localization for Reinforcement
Learning. In 2023 IEEE International Conference On
Artificial Intelligence Testing (AITest) (pp. 49-50).
IEEE..

[31] Li, Y., Wang, S. and Nguyen, T., 2021, May. Fault
localization with code coverage representation learning.
In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE) (pp. 661-673). IEEE.

[32] Meng, X., Wang, X., Zhang, H., Sun, H. and Liu, X.,
2022, May. Improving fault localization and program
repair with deep semantic features and transferred
knowledge. In Proceedings of the 44th International
Conference on Software Engineering (pp. 1169-1180).

[33] Alhumam, A., 2022. Explainable Software Fault
Localization Model: From Blackbox to Whitebox.
Computers, Materials & Continua, 73(1).

[34] Huo, X., Thung, F., Li, M., Lo, D. and Shi, S.T., 2019.
Deep transfer bug localization. IEEE Transactions on
software engineering, 47(7), pp.1368-1380.

[35] Zhu, Z., Li, Y., Tong, H. and Wang, Y., 2020, July.
Cooba: Cross-project bug localization via adversarial
transfer learning. In IJCAI.

[36] Schütze, H., Manning, C.D. and Raghavan, P., 2008.
Introduction to information retrieval (Vol. 39, pp. 234-
265). Cambridge: Cambridge University Press.

[37] Huo, X., Li, M. and Zhou, Z.H., 2016, July. Learning
unified features from natural and programming
languages for locating buggy source code. In IJCAI (Vol.
16, No. 2016, pp. 1606-1612).

[38] Abreu, R., Zoeteweij, P. and Van Gemund, A.J., 2007,
September. On the accuracy of spectrum-based fault
localization. In Testing: Academic and industrial
conference practice and research techniques-
MUTATION (TAICPART-MUTATION 2007) (pp. 89-
98). IEEE.

[39] Saha, R.K., Lawall, J., Khurshid, S. and Perry, D.E.,
2014, September. On the effectiveness of information
retrieval based bug localization for c programs. In 2014
IEEE international conference on software maintenance
and evolution (pp. 161-170). IEEE.

[40] Lam, A.N., Nguyen, A.T., Nguyen, H.A. and Nguyen,
T.N., 2015, November. Combining deep learning with
information retrieval to localize buggy files for bug
reports (n). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE)
(pp. 476-481). IEEE.

[41] Wang, B., Xu, L., Yan, M., Liu, C. and Liu, L., 2020.
Multi-dimension convolutional neural network for bug
localization. IEEE Transactions on Services Computing,
15(3), pp.1649-1663.

[42] Lam, A.N., Nguyen, A.T., Nguyen, H.A. and Nguyen,
T.N., 2017, May. Bug localization with combination of
deep learning and information retrieval. In 2017
IEEE/ACM 25th International Conference on Program
Comprehension (ICPC) (pp. 218-229). IEEE.

[43] Fang, F., Wu, J., Li, Y., Ye, X., Aljedaani, W. and
Mkaouer, M.W., 2021. On the classification of bug
reports to improve bug localization. Soft Computing, 25,
pp.7307-7323.

[44] Lee, N.K., Azizan, F.L., Wong, Y.S. and Omar, N.,
2018. DeepFinder: An integration of feature-based and
deep learning approach for DNA motif discovery.
Biotechnology & Biotechnological Equipment, 32(3),
pp.759-768.

[45] Abreu, R., Zoeteweij, P. and Van Gemund, A.J., 2006,
December. An evaluation of similarity coefficients for
software fault localization. In 2006 12th Pacific Rim
International Symposium on Dependable Computing
(PRDC'06) (pp. 39-46). IEEE.

[46] Jones, J.A. and Harrold, M.J., 2005, November.
Empirical evaluation of the tarantula automatic fault-
localization technique. In Proceedings of the 20th
IEEE/ACM international Conference on Automated
software engineering (pp. 273-282).

[47] Wong, W.E., Debroy, V., Li, Y. and Gao, R., 2012, June.
Software fault localization using dstar (d*). In 2012
IEEE Sixth International Conference on Software
Security and Reliability (pp. 21-30). IEEE.

[48] Papadakis, M. and Le Traon, Y., 2015. Metallaxis FL:
mutation based fault localization. Software Testing,
Verification and Reliability, 25(5-7), pp.605-628.

[49] Voorhees, E.M., 1999, November. The trec-8 question
answering track report. In Trec (Vol. 99, pp. 77-82).

[50] Cord, M. and Cunningham, P. eds., 2008. Machine
learning techniques for multimedia: case studies on

488

organization and retrieval. Springer Science & Business
Media.

[51] Jeffrey, D., Feng, M., Gupta, N. and Gupta, R., 2009,
May. BugFix: A learning-based tool to assist developers
in fixing bugs. In 2009 IEEE 17th International
Conference on Program Comprehension (pp. 70-79).
IEEE.

[52] Just, R., Jalali, D. and Ernst, M.D., 2014, July.
Defects4J: A database of existing faults to enable
controlled testing studies for Java programs. In
Proceedings of the 2014 international symposium on
software testing and analysis (pp. 437-440).

[53] Vancsics, B., Horváth, F., Szatmári, A. and Beszédes,
Á., 2021, March. Call frequency-based fault localization.
In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER) (pp.
365-376). IEEE.

[54] Vancsics, B., Horváth, F., Szatmári, A. and Beszédes,
Á., 2022. Fault localization using function call
frequencies. Journal of Systems and Software, 193,
p.111429.

[55] Silva, A., Martinez, M., Danglot, B., Ginelli, D. and
Monperrus, M., 2021. Flacoco: Fault localization for
java based on industry-grade coverage. arxiv preprint
arxiv:2111.12513.

[56] Zhang, Z., Lei, Y., Mao, X., Yan, M., Xia, X. and Lo,
D., 2023. Context-aware neural fault localization. IEEE
Transactions on Software Engineering.

[57] Yang, A.Z., Le Goues, C., Martins, R. and Hellendoorn,
V., 2024, February. Large language models for test-free
fault localization. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering (pp.
1-12).

[58] Li, Z., Shi, B., Wang, H., Liu, Y. and Chen, X., 2021,
August. Hmbfl: Higher-order mutation-based fault
localization. In 2021 8th International Conference on
Dependable Systems and Their Applications (DSA) (pp.
66-77). IEEE.

[59] Amario de Souza, H., de Souza Lauretto, M., Kon, F. and
Lordello Chaim, M., 2022. Understanding the use of
spectrum based fault localization. Journal of Software:
Evolution and Process, p.e2622.

[60] Li, C., Liu, L. and Li, X., 2012, January. Software
networks of java class and application in fault
localization. In 2012 Second International Conference
on Intelligent System Design and Engineering
Application (pp. 1117-1120). IEEE.

[61] Sinha, S., Shah, H., Görg, C., Jiang, S., Kim, M. and
Harrold, M.J., 2009, July. Fault localization and repair
for Java runtime exceptions. In Proceedings of the
eighteenth international symposium on Software testing
and analysis (pp. 153-164).

[62] de Souza, H.A., Chaim, M.L. and Kon, F., 2016.
Spectrum-based software fault localization: A survey of
techniques, advances, and challenges. arxiv preprint
arxiv:1607.04347.

[63] Keller, F., Grunske, L., Heiden, S., Filieri, A., van
Hoorn, A. and Lo, D., 2017, July. A critical evaluation
of spectrum-based fault localization techniques on a
large-scale software system. In 2017 IEEE International
Conference on Software Quality, Reliability and
Security (QRS) (pp. 114-125). IEEE.

[64] Heiden, S., Grunske, L., Kehrer, T., Keller, F., Van
Hoorn, A., Filieri, A. and Lo, D., 2019. An evaluation of
pure spectrum based fault localization techniques for
large scale software systems. Software: Practice and
Experience, 49(8), pp.1197-1224.

[65] Zhang, S. and Zhao, J., 2007. Locating faults in AspectJ
programs. Technical Report SJTU-CSE-TR-07-03,
Center for Software Engineering, SJTU.

[66] Gabor, U.T., 2021. Software fault injection and
localization in embedded systems..

[67] Bartocci, E., Ferrère, T., Manjunath, N. and Ničković,
D., 2018, April. Localizing faults in Simulink/Stateflow
models with STL. In Proceedings of the 21st
International Conference on Hybrid Systems:
Computation and Control (part of CPS Week) (pp. 197-
206).

[68] Sinha, V.S., Mani, S. and Mukherjee, D., 2012, October.
Is text search an effective approach for fault localization:
a practitioners perspective. In Proceedings of the 3rd
annual conference on Systems, programming, and
applications: software for humanity (pp. 159-158).

489

