
Systematic Analysis of Learning-Based Software Fault Localization 

Ya Zou1, Hui Li1,*, Dongcheng Li2, Man zhao1, and Zizhao Chen3  
1School of Computer Science, China University of Geosciences, Wuhan, China 

2Department of Computer Science, California State Polytechnic University - Humboldt, Arcata, USA 
3Department of Computer Science, University of Texas at Dallas, Richardson, USA 

zouya@cug.edu.cn, huili@vip.sina.com, dl313@humboldt.edu, zhaoman@cug.edu.cn, zizhao.chen2@utdallas.edu 
*corresponding author 

 

Abstract—This paper reviews the evolution of learning-
based software fault localization methods, examining their 
benefits, challenges, and prospective developments in 
practical applications. We analyze the limitations of 
traditional methods and provide an in-depth discussion of 
learning-based fault localization approaches, covering the 
application of supervised, unsupervised, and reinforcement 
learning techniques in software fault localization. 
Furthermore, we explore key issues in current research and 
future research directions, and analyze threats that could 
impact the effectiveness of the research. In conclusion, we 
summarize the current status and future prospects of these 
methods, along with our perspective on the forthcoming 
advancements in this field.  

Keywords-software fault localization; learning based; 
suspicious code; survey 

1. INTRODUCTION  

When encountering software errors, programmers often invest 
significant time and effort in attempting to reproduce, 
understand, and fix these errors [1][2]. Fault localization in 
software systems has always been a key issue in the field of 
software engineering [3]. Existing fault localization 
techniques encompass various traditional methods [4][5]. 
Print Debugging involves inserting print statements to 
monitor program execution by outputting variable values and 
states. Although simple, this approach becomes time-
intensive in complex, large-scale systems. Breakpoint 
Debugging allows developers to pause program execution at 
specific locations, providing detailed inspection. It offers 
greater control but can be laborious during debugging. Static 
Analysis inspects source or binary code for potential errors, 
detecting common issues like unused variables or memory 
leaks. For example, FindBugs [6] is an open-source Java static 
analysis tool and has experience in production environments. 
FindBugs evaluates which types of defects can be effectively 
detected with relatively simple techniques, and aids 
developers in understanding how to integrate these tools into 
software development; Checkstyle [7] is a development tool 
that helps developers write Java code that adheres to coding 
standards. It automates the process of checking Java code, 
thereby freeing humans from this monotonous but important 
task. This makes it highly suitable for projects that wish to 

enforce coding standards [8]. However, it may lack accuracy 
for dynamic problems or highly complex systems. 
Traditional methods often rely on rules, manual experience, 
and static analysis, but perform poorly in dealing with 
complex, large-scale, and highly dynamic systems. As 
machine learning technology rapidly advances, learning-
based approaches to software fault localization are 
increasingly coming into focus. Leveraging the strengths of 
vast data and learning algorithms, these methods achieve more 
precise and efficient software fault localization. 
According to our repository, Figure 1 shows the number of 
papers related to learning-based software fault localization 
published in top journals and leading conferences focusing on 
software engineering from 2010 to November 2023. These 
journals and conferences include IEEE Transactions on 
Software Engineering, ACM Transactions on Software 
Engineering and Methodology, International Conference on 
Software Engineering, ACM International Symposium on 
Foundations of Software Engineering, and ACM International 
Conference on Automated Software Engineering. This trend 
supports the view that learning-based software fault 
localization is not only an important research topic but has 
also been widely discussed and studied in top software 
engineering journals and conferences over the past decade. 
 

 
Figure 1. Papers on software fault localization from 2010 to 

November 2023 
 
This paper first reviews the limitations of traditional fault 
localization methods, such as the challenges of locating faults 
in large-scale systems, over-reliance on manual expertise, and 
inadequate adaptation to system dynamics. Following that, we 
explore in depth the learning-based fault localization methods, 
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encompassing the application of techniques like supervised 
learning, unsupervised learning, and reinforcement learning in 
software fault localization. We evaluate the advantages and 
limitations of these methods and discuss their application in 
real-world scenarios. 
The remainder of this paper is organized as follows: We first 
provide an in-depth exploration of learning-based fault 
localization methods and elucidate their principles and 
performance in Section 2. In Section 3, critical topics and 
research domains, including evaluation metrics, fault 
localization tools, and datasets, are extensively discussed to 
comprehensively examine their impact on fault localization 
research. Section 4 focuses on potential challenges that may 
affect the credibility and validity of the study, evaluating 
limitations in drawing research conclusions. The final chapter, 
concluding the entirety of this paper, summarizes the research 
findings, presents conclusions, and explores future directions 
for further study. 

2. LEARNING-BASED SOFTWARE FAULT LOCALIZATION 

Learning-based approaches to software fault localization 
present an innovative and effective solution to overcome the 
constraints of traditional methods in managing complexity 
and diversity. In this chapter, we systematically examine the 
application of learning algorithms in fault localization, 
encompassing subfields such as supervised learning, 
unsupervised learning, semi-supervised learning, 
reinforcement learning, and transfer learning. 

2.1. Supervised Learning Methods 

In recent years, supervised learning [9] methods have been 
widely applied in the field of software fault localization, 
significantly improving the accuracy of fault detection and 
prediction. The fundamental principle of supervised learning 
is to learn from a labeled training dataset and generate a 
model, which is then used to predict unknown data [10]. 
Within the realm of fault localization tasks, supervised 
learning has the capacity to uncover latent associations 
between program characteristics and errors, thus efficiently 
pinpointing potential error sites. 

2.1.1. Machine Learning-Based Methods 

These methods utilize machine learning models, such as 
Support Vector Machines (SVM), clustering algorithms, etc., 
for software fault localization. They integrate supervised or 
unsupervised learning techniques, extracting information 
from program execution or static features, and build models 
to predict and localize potential fault locations.  
Wu et al. [11] proposed a direct fault localization method, 
combining Gaussian Mixture Models (GMM) and Support 
Vector Machines (SVM). This method initially preprocesses 
the training data using a GMM-based clustering algorithm, 
then improves the learning capability of SVM by replacing its 
constant penalty factor with two adjustable parameters, 
revealing the relationship between test case coverage 
information and execution results. By comparing its 

efficiency with other techniques on the Siemens Suite, the 
study shows that this method significantly improves 
localization accuracy in both single and multiple fault 
scenarios, without incurring additional testing costs. 
Roychowdhury and Khurshid [12] proposed a new method for 
fault localization using feature selection techniques in 
machine learning. Every additional failure or successful run 
can provide a plethora of distinct information, which can help 
locate errors in the code. Statements with the greatest diversity 
of feature information can point to the most suspicious lines 
of code. This method outperforms the most advanced fault 
localization methods in most subject programs in the Siemens 
Suite. 
Shaikh et al. [13] proposed a software fault localization 
method that utilizes a subset of dynamic invariants as features, 
combined with supervised learning techniques. This method 
focuses on extracting runtime information during program 
execution and possible static features in the source code to 
identify fault locations. These features are used to train 
supervised learning models to capture the association between 
erroneous and normal states. After training, the model can be 
employed to predict fault locations in unfamiliar data. By 
integrating subsets of dynamic invariants with other features, 
this method has made significant progress in enhancing the 
accuracy of fault localization. 
Liang et al. [14] proposed a fault localization system named 
CAST, which utilizes deep learning technology and custom 
program abstract syntax trees (ASTs) to automatically and 
efficiently locate potential software bug source files. The 
system achieves this by extracting lexical semantics from bug 
reports (such as words) and source files (e.g., method names), 
as well as program semantics (such as abstract syntax trees, 
ASTs). CAST also utilizes custom ASTs to enhance the Tree-
based Convolutional Neural Network (TBCNN) model, 
which can distinguish between user-defined methods and 
system-provided methods, and reflect their contributions to 
causing defects. Additionally, the custom AST groups 
syntactic entities with similar semantics and removes those 
with little or redundant semantics to enhance learning 
performance. 

2.1.2.Deep Learning-Based Fault Localization Methods 

These methods utilize deep learning models, such as 
Convolutional Neural Networks (CNN) and enhanced neural 
networks, for software fault localization. They focus on using 
neural network architectures to process software code, 
features, and contextual information, aiming to improve the 
accuracy and efficiency of fault localization. 
Xiao et al. [15] proposed a deep learning-based model named 
DeepLoc, consisting of an enhanced Convolutional Neural 
Network (CNN) that takes into account bug fix time and 
frequency, along with word embedding and feature detection 
technologies. DeepLoc uses word embeddings to represent 
words in bug reports and source files, preserving their 
semantic information, and employs various CNNs to detect 
their features. Research results show that DeepLoc, compared 
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to traditional CNNs, improved the MAP by 10.87% to 13.4%. 
In terms of Accuracy@k, MAP, and MRR, DeepLoc 
outperforms the current four most advanced methods 
(DeepLocator, HyLoc, LR+WE, and BugLocator) in a shorter 
computation time. 
Li et al. [16] proposed a deep learning method named 
DeepFL, which uses multiple dimensions of fault diagnostic 
information to predict potential fault locations. Research 
results indicate that DeepFL significantly outperforms the 
state-of-the-art trap/FLUCCS methods in fault localization 
(for instance, locating over 50 faults in the Top-1 category). 
Furthermore, DeepFL exhibits high efficiency in making 
cross-project predictions. 
Li et al. [17] proposed a deep learning-based fault localization 
method named FixLocator. FixLocator can identify erroneous 
statements within one or several methods; its method-level 
fault localization model zeroes in on fixed methods, while its 
statement-level model attends to jointly fixed statements. The 
correct execution of this learning pattern can promote each 
other, using cross-stitch units for soft sharing of model 
parameters, allowing the effects of MethFL and StmtFL to 
propagate mutually. Furthermore, the study explores a new 
feature for fault localization – co-change statements, and 
employs a graph-based convolutional network to integrate 
different types of program dependencies. Experiments prove 
that, compared to the state-of-the-art statement-level FL 
baseline, FixLocator achieved an improvement of 26.5% to 
155.6% in localizing CC fixed statements. 

2.1.3.Learning-to-Rank Based Fault Localization Methods 

These methods rely on learning-to-rank techniques, using 
ranking algorithms or models to arrange code elements (such 
as methods, statements, etc.) in order of likelihood, to 
determine the probable location of faults. They combine 
learning and ranking phases, sorting and locating faults 
through trained models or algorithms. 
B. Le et al. [18] proposed a new fault localization method, 
named Savant, that adopts a learning-to-rank strategy. It 
utilizes potential invariant differences and suspicion scores as 
features, ranking methods based on these features to assess 
their likelihood of being the root cause of faults. Savant 
comprises four key steps: method clustering and test case 
selection, invariant mining, feature extraction, and method 
ranking. After these four steps, Savant produces a brief ranked 
list, highlighting methods that are likely to harbor bugs. 
Evaluation results indicate that, in the top 1, 3, and 5 positions 
of the generated ranking list, Savant correctly identified 63.03, 
101.72, and 122 erroneous methods, respectively. Compared 
to several state-of-the-art spectrum-based fault localization 
baselines, Savant achieved an increase of 57.73%, 56.69%, 
and 43.13% in the number of successfully localized faults at 
the top 1, 3, and 5 positions, respectively. 
Kim et al. [19] proposed a new fault localization technique, 
PRINCE, which is a learning-to-rank based method. PRINCE 
utilizes Genetic Programming (GP) to combine multiple sets 
of localization input features previously studied 

independently. It encompasses dynamic features, including 
Spectrum-Based Fault Localization (SBFL) and Mutation-
Based Fault Localization (MBFL) techniques. Additionally, it 
employs static features, such as dependency information and 
the structural complexity of program entities. GP combines all 
these pieces of information to train a ranking model for fault 
localization. Empirical evaluation results on 65 real faults 
from CoREBench, 84 artificial faults from SIR, and 310 real 
faults from Defects4J indicate that PRINCE significantly 
outperforms the most advanced SBFL, MBFL, and learn-to-
rank techniques. On average, PRINCE only needs to inspect 
2.4% of the executed statements to locate faults, showing a 
4.2-fold and 3.0-fold increase in precision compared to SBFL 
and MBFL, respectively. 
Sohn and Yoo [20] expanded SBFL by incorporating code and 
change metrics previously studied in the context of defect 
prediction, such as size, age, and code changes. This work 
utilizes the suspicion values from existing SBFL formulas and 
these source code metrics as features, applying two learning-
to-rank techniques: Genetic Programming (GP) and Linear 
Rank Support Vector Machines (SVM). They used 210 real-
world faults from the Defects4J repository, conducted 10-fold 
cross-validation, and evaluated method-level fault 
localization. GP with additional source code metrics ranked 
the faulty methods at the top in 106 out of 210 faults, and 
achieved similar results in 173 faults. This work significantly 
improved the state-of-the-art SBFL formulas, with the best 
formula ranking 49 and 127 faults at the top, respectively. 
Xuan and Monperrus [21] introduced MULTRIC, a learning-
based fault localization method that integrates multiple 
ranking metrics for efficient fault localization. The method 
unfolds in two key stages: learning and ranking. By learning 
from both faulty and non-faulty code, MULTRIC constructs a 
ranking model. When a new fault arises, it uses the learned 
model to calculate the final ranking. After empirical 
comparison with four extensively studied metrics and three 
recently proposed metrics, results indicate that MULTRIC is 
more effective in fault localization than advanced measuring 
methods like Tarantula, Ochiai, and Ample. 

2.1.4.Coverage-Based Fault Localization Methods 

These methods use program coverage information, typically 
capturing this information through program representations or 
graphs, and apply various techniques and models to analyze 
and infer fault locations. 
Lou et al. [22] introduced Grace, a novel coverage-based fault 
localization technique. This technique makes full use of 
detailed coverage information and graph-based 
representational learning. Firstly, it introduces a new graph-
based representation method, encapsulating exhaustive 
coverage information and the fine-grained structure of the 
code into a graph. Subsequently, Grace utilizes a gated graph 
neural network to learn valuable features from the graph-
based coverage representation and ranks program entities in a 
list format. Evaluations on the widely-used benchmark 
Defects4J (V1.2.0) show that Grace's performance 
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significantly surpasses that of the most advanced coverage-
based fault localization methods. The study also reveals that 
Grace learns fundamental features from coverage information, 
which complements the information used by current learning-
based fault localization methods. 

2.1.5.Causal Inference-Based Fault Localization Methods 

These methods integrate causal inference with machine 
learning, employing statistical causal reasoning and machine 
learning models for inferring and locating software faults. 
They consider causal relationships and reason about code 
variables and conditions to predict the probable location of 
faults. 
Kucuk et al. [23] proposed UniVal, a new software fault 
localization technique. This method utilizes causal inference 
techniques and machine learning, integrating information 
about predicate outcomes and variable values. UniVal uses a 
random forest learner as a supervised learning model to 
localize faults in various elements of a program, enabling a 
more precise assessment of the true fault-inducing effects of 
program statements. This is a novel fault localization 
technique based on statistical causal inference methods, 
combining value-based and predicate-based fault localization 
approaches by converting predicates into assignment 
statements. UniVal utilizes a machine learning model to 
minimize bias in estimates and assess the average causal effect 
of program variables, without needing to actually change the 
program or its execution. Currently, UniVal can handle 
numerical, Boolean, categorical, and string values. 
Experimental results show that UniVal performs better than 
several competing techniques. 
Figure 2 shows the distribution of papers across supervised 
learning methods in our repository. Machine learning-based 
papers are the most predominant, accounting for 31% of all 
papers, followed by deep learning-based at 23%, and then 
causal inference-based at 8%. Coverge-based are the least, 
comprising only 7% of the total. 

 
Figure 2. Distribution of papers across supervised learning 

methods 

In summary, historical research has offered a diverse array of 
supervised learning approaches for software fault localization, 
spanning from traditional SVMs to advanced deep learning 

models, and even innovative methods incorporating causal 
inference. These techniques have significantly contributed to 
enhancing localization precision and adapting to a variety of 
projects and datasets. Future studies can delve deeper into the 
generalizability, practicality, and real-world project 
applications of these methods, aiming to identify the most 
appropriate technique for specific contexts. 

2.2. Unsupervised Learning Methods 

Unsupervised learning does not rely on labeled data, but 
instead seeks hidden patterns or intrinsic structures, such as 
anomaly detection and clustering. Clustering is one of the 
most commonly used unsupervised learning methods, 
dividing similar objects into groups or clusters to uncover the 
data's intrinsic structure. In fault localization tasks, clustering 
methods can identify anomalous code lines or modules and 
differentiate them from normally functioning parts, as in the 
k-means clustering and similarity-based method proposed by 
An [24]. At the start of testing, K-Means clustering is 
performed on the test case set, and the filtered test cases can 
cover more execution information. Subsequently, for test 
cases with failed execution results, test cases with similar 
execution information are filtered to better highlight the error 
information in the failed test cases. Experiments on the 
Defects4J dataset show that this method can be combined with 
other techniques to improve its efficiency and is well 
compatible with traditional software fault localization 
algorithms, achieving an average improvement rate of 13.37% 
in 8 scenarios. 
Zhang et al. [25] proposed a set of anomaly detection 
techniques based on prefix trees, with the prefix tree model 
serving as a compact, lossless data representation of execution 
traces. Furthermore, the prefix tree distance metric provides 
an effective heuristic for guiding the search for closely related 
execution traces. In density-based algorithms, using prefix 
tree distance confines the k-nearest neighbors search to a 
small subset of nodes, significantly reducing computation 
time without sacrificing accuracy. Experimental studies show 
that in the automatic identification of software faults, methods 
guided by prefix trees and prefix tree distance significantly 
speed up the process. 

2.3. Semi-Supervised Learning Methods 

Although supervised learning is effective in fault localization, 
the problem of requiring a large amount of labeled data still 
exists. Semi-supervised learning fully utilizes both labeled 
and unlabeled data, employing self-training on unlabeled data 
or generative adversarial networks with minimal labeled data 
for precise training. 
Wei et al. [26] points out that although supervised learning is 
effective in fault localization, the issue of needing a large 
amount of labeled data still exists. Semi-supervised learning 
fully exploits both labeled and unlabeled data, using self-
training on unlabeled data or generative adversarial networks 
with a small amount of labeled data for precise training. 
Furthermore, the algorithm was validated on the Siemens 
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Suite dataset. By comparison with traditional supervised 
learning algorithms, the effectiveness of semi-supervised 
learning algorithms in software fault localization was 
demonstrated. 
Zhu et al. [27] proposed the first semi-supervised bug 
localization model, BL-GAN, and introduced a promising 
generative adversarial network into BL-GAN, which 
generates file paths by searching the project directory tree 
instead of comparing all code file contents, thereby 
constructing synthetic error correction records that closely 
mimic reality, For handling error reports, BL-GAN utilizes an 
attention-based Transformer architecture to capture semantic 
and sequential information, and to capture proprietary 
structural information in code files, BL-GAN uses a novel 
multi-layer graph convolutional network to process source 
code in a graphical view. Extensive experiments on large-
scale real-world datasets demonstrate that the BL-GAN model 
significantly outperforms the most advanced techniques in all 
evaluation metrics. 
Yan et al. [28] proposed an entropy-based framework filter to 
filter unlabeled test cases, wherein statement-based entropy 
and testsuite-based entropy were constructed to measure the 
localization uncertainty of a given test set. Compared to a 
threshold value, unlabeled test cases with lower statement-
based entropy or testsuite-based entropy are selected. Based 
on this, an integrated feature strategy based on statement 
entropy and testsuite entropy was presented to calculate the 
suspiciousness of statements. The efficiency of the filter was 
evaluated through six open-source programs and three 
spectrum-based fault localization methods. Results indicated 
that the fault localization efficiency using the effilter strategy, 
based on statement entropy and testsuite entropy, improved by 
18.8% and 16.5%, respectively, compared to not using the 
effilter strategy. The filter based on statement entropy and 
testsuite entropy can improve fault localization in scenarios 
lacking test oracles, and has a certain enhancing effect on fault 
localization in practical applications. 

2.4. Reinforcement Learning Methods 

Reinforcement learning, as a method that learns through 
interaction with the environment, has shown significant 
potential in recent applications of software fault localization. 
The objective of reinforcement learning methods is to learn a 
policy that guides actions to maximize long-term rewards. 
Chakraborty et al. [29] proposed a bug localization method 
based on reinforcement learning named RLOCATOR, which 
is an RL-based software fault localization approach. The 
innovative aspect of RLocator lies in its use of RL for error 
localization, including the formulation of the error localization 
process into an MDP, and its comparison with two state-of-
the-art bug localization tools (FLIM and BugLocator), and 
evaluations indicate that RLocator significantly outperforms 
these two methods. 
Moran et al. [30] proposed a method for automatically 
locating faults in reinforcement learning programs. The 
method, termed SBFL4RL, scrutinizes multiple executions to 

identify internal states that are often detrimental to program 
performance. Locating these states can aid testers in 
understanding known faults and even in detecting unknown 
faults. SBFL4RL underwent validation in two case studies, 
successfully pinpointing the injected faults. Preliminary 
results indicate that faults in reinforcement learning programs 
can be automatically located, and there is room for further 
research. 
Li et al. [31] developed DEEPRL4FL, a deep learning-based 
fault localization approach, that frames fault localization as an 
image pattern recognition challenge, and pinpoints errors at 
both statement and method levels. DEEP RL4FL 
accomplishes this using cutting-edge code coverage 
representation learning and data dependency reinforcement 
learning for program statements. This method integrates two 
forms of reinforcement learning based on dynamic info in 
code coverage matrices with code representation learning 
focused on static info from commonly suspect source code. 
The approach draws inspiration from crime scene 
investigations, where detectives scrutinize crime scenes 
(failed test cases and statements) and relevant individuals 
(dependent statements), along with usual suspects with a 
history of similar offenses (analogous error codes in the 
training data). Regarding code coverage info, DEEP RL4FL 
initially sorts test cases and flags statements indicating errors, 
anticipating the model to discern patterns that distinguish 
between erroneous and correct statements/methods. In terms 
of inter-statement dependencies, it considers not only the 
statements themselves but also their data dependencies on 
other statements and data flows during execution. Finally, the 
code coverage matrix, the data dependencies between 
statements, and the vector representation of source code are 
combined and used as input for a classifier built with 
convolutional neural networks to detect faulty 
statements/methods. 

2.5. Transfer Learning Methods 

Transfer learning can utilize previously acquired knowledge 
and experience to solve new problems, enabling models to 
effectively address issues like low utilization of training data 
and high data annotation costs. By applying acquired 
knowledge to new, unlabeled software fault localization 
problems, transfer learning methods can significantly enhance 
the efficiency and accuracy of fault localization. 
Meng et al. [32] introduced TRANSFER, a novel approach 
that leverages deep semantic features and harnesses 
knowledge from open-source data to enhance fault 
localization and program repair. The first step involves 
creating two extensive open-source bug datasets and 
developing 11 BiLSTM-based binary classifiers and a 
BiLSTM-based multi-classifier to discern deep semantic 
features of statements for fault localization and program 
repair. Following that, a blend of semantic, spectrum-based, 
and mutation-based features was employed, utilizing an MLP-
based model for fault localization. Finally, semantic-based 
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features were used to rank repair templates in the context of 
program repair. 
Alhuman [33] proposed a model to generate counterfactual 
explanations for decisions made by fault localization models. 
The construction of a nonlinear neural network model enables 
the approximation and propagation representation of input 
information through neural systems. This indicates a high 
proficiency in transfer learning, even with minimal training 
data. The proposed XFL ensures transparent decision-making 
without compromising the model's performance. The 
proposed XFL ranks software program statements based on 
potential vulnerability scores approximated from training 
data. The model's performance is further assessed using 
various metrics, such as the number of evaluated statements, 
confidence in fault localization, and Top-N evaluation 
strategies. 
Huo et al. [34] introduced a deep transfer learning approach 
for bug localization across different projects. TRANP-CNN, 
the proposed method, harnesses transferable semantic features 
from the source project and leverages the target project’s 
labeled data for efficient cross-project error localization. This 
performance notably surpasses the cutting-edge deep 
learning-based bug localization solutions and several other 
advanced alternatives, taking into account a variety of 
standard evaluation metrics. 
Zhu et al. [35] introduced an adversarial approach to transfer 
learning for bug localization, centered on the cross-project 
transfer of shared characteristics (namely, public 
information). COOBA employs a shared encoder to glean 
indicative public information from bug reports across 
projects, and utilizes distinct feature extractors for each 
project to extract private information from code files. COOBA 
integrates adversarial learning to guarantee efficient 
extraction of commonly shared public information across 
various projects. Comprehensive testing on four large-scale 
real-world datasets shows that the proposed COOBA method 
significantly surpasses current technological benchmarks. 
Figure 3 shows the distribution of papers across all categories 
in our repository. Supervised learning-based papers are the 
most predominant, accounting for 52% of all papers, followed 
by transfer learning-based at 16%, and then both 
reinforcement learning and semi-supervised learning at 12%. 
Papers categorized under unsupervised learning are the least, 
comprising only 8% of the total. 

 
Figure 3. Distribution of papers across all categories 

 
As a software fault localization technique, learning-based 
methods, with their immense potential and wide 
applicability, have gradually become a focus of research. 
However, these methods have their own strengths and 
limitations, and are suited to different problems and 
scenarios. In the future, with the emergence of new 
technologies such as deep learning and transfer learning, we 
anticipate more innovations and breakthroughs in learning-
based fault localization methods. 

3. IMPORTANT ISSUES AND RESEARCH AREAS 

This section focuses on the core issues and future research 
directions in the field of software fault localization. We 
thoroughly examine the selection and precision of assessment 
metrics, evaluate the merits and limitations of existing 
software fault localization tools and methods, and suggest 
approaches for their integration to boost efficacy. Moreover, 
we critically review current datasets, highlighting their 
limitations and stressing the need to create datasets that are 
more representative and practical. In conclusion, we spotlight 
nascent research domains within software fault localization, 
probing solutions for large-scale, intricate systems, the 
synergistic application of machine learning in fault 
localization, and strategies for precisely identifying faults in 
specialized domains. This section aims to provide an 
exhaustive review of these issues and offer guidance for 
upcoming research avenues, committed to propelling cutting-
edge investigations and innovative advancements in software 
fault localization. 

3.1. Evaluation Metrics 

Measuring the effectiveness of fault localization methods 
using relevant formulas or scores is crucial as it provides 
objective quantitative metrics to assess the performance and 
accuracy of the localization algorithms. Such metrics disclose 
the efficacy of fault localization methods in detecting and 
pinpointing program errors, offering developers dependable 
feedback. The indispensability of this quantitative approach 
stems from its capacity to assist development teams in 
pinpointing the most efficient fault localization methods, 
guiding the judicious distribution and enhancement of 
resources, thus expediting the fault repair process. Comparing 
the scores or metrics of various methods enables the 
identification of which techniques are more reliable or apt for 
addressing certain types of problems in specific scenarios. 
Consequently, these metrics serve not just as an objective 
assessment of the localization algorithms' effectiveness but 
also furnish vital directions and strategies for teams to 
enhance and refine localization methods. Table 1 presents an 
overview of Metrics and Papers utilizing these metrics. It 
includes details such as the names of the metrics, brief 
descriptions of each metric, and information on which papers 
have utilized these metrics. 
The following are some commonly used evaluation metrics: 
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Top N: Top N Rank refers to the number of errors associated 
with the files ranked in the top N in the returned results. Based 
on previous research [36][37][38], three values for N are 
considered: 1, 5, 10. For an error report, if at least one file that 

should be fixed is included in the top N query results, it 
indicates that the error has been located. The higher the value 
of this metric, the better the performance of error localization 
[39].

Table 1. Metrics 
Name Formula Paper Using The Metrics

MRR [37,40,41,42] 

MAP � [20,41,42] 

Precision rate [7,25,43,44] 

Recall rate [7,25,43,44] 

F-measure [7,25,43] 

MFR [16,31,32,45,46,47,48] 

MAR [16,31,32,45,46,47,48] 

� MRR: MRR (Mean Reciprocal Rank) is a metric used to 
assess the process of generating potential response lists 
for queries. It measures by calculating the reciprocal of 
the rank of the first correct answer in the results of a 
query. The mean reciprocal rank then represents the 
average of the reciprocal ranks across a set of query 
results. 

 

The higher the MRR value, the better the performance 
of the fault localization. 

� MAP: MAP (Mean Average Precision) is a single metric 
for the quality of information retrieval [49], particularly 
suitable for cases where one query may involve multiple 
relevant documents. For a single query, Average 
Precision (AvgP) is the average of precision values 
obtained for that query. The calculation of precision 
values is as follows: 

 

In this formula, j represents the ranking, M is the number 
of retrieved instances, and pos(j) indicates whether the 
instance at rank j is relevant. P(j) is the precision at a 
given cut-off rank j, defined as follows: 

 

The Mean Average Precision for a set of queries is the 
average of the average precision values of all queries. In 
fault localization, a bug may be associated with multiple 
files. 

� Precision rate: Precision rate is calculated as follows: 

 

True positive refers to the number of identified code 
segments that are defective and are indeed faulty, while 
false positive denotes the number of code segments 
incorrectly identified as defective when they are actually 
free of faults. Precision rate is utilized in software fault 
localization to measure the accuracy and reliability of 
identifying faulty code segments. 

� Recall rate: Recall rate measures the coverage of a 
localization method in identifying actual faults. This 
metric represents the probability of successfully 
identifying real faults, indicating the proportion of 
correctly identified faults among all actual faults. The 
formula for Recall rate is: 

 

The Recall rate assesses the capability of fault 
localization methods in discovering actual faults. In the 
context of software fault localization, a higher Recall 
rate signifies the method's effectiveness in capturing 
and identifying genuine faults while minimizing 
undetected faults. This metric is crucial for evaluating 
the comprehensiveness and efficacy of fault 
localization techniques. 

� F-measure: F-measure is a comprehensive evaluation 
metric that combines information from Precision and 
Recall. It quantifies the balance between Precision and 
Recall, offering an assessment of the overall 
performance of fault localization methods. The formula 
for F-measure is: 

 

In software fault localization, the F-measure serves as a 
holistic evaluation metric to assess the balance between 
accuracy and coverage of a localization method. A 
higher F-measure value indicates a well-balanced 
approach between precision and recall, crucial in the 
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selection and evaluation of fault localization techniques. 
It stands as a significant indicator for evaluating the 
overall performance of methods, guiding improvements 
and optimizations in fault localization techniques. 

� MFR: The formula for MFR is as follows: 

 

N is the total number of faults.  is the rank of the highest 
faulty statement in the i-th fault. This formula represents 
MFR as a metric for a project, which calculates the mean 
of the highest faulty statement's rank for each fault. 

� MAR: The formula for MAR is as follows: 

 

N is the total number of faults. is the number of faulty 
statements in the ii-th fault.  is the rank of the j-th faulty 
statement in the i-th fault.  This formula represents MAR 
as a metric for a project, which calculates the average 
rank of all faulty statements for each fault, and then 
computes the mean of these average ranks for all faults. 

These evaluation metrics play distinct roles in the realm of 
software fault localization. Top N focuses on the quantity of 
error files ranked highly, while MRR delves into the ranking 

of correct answers within query results. MAP suits scenarios 
involving multiple relevant documents in information 
retrieval. Precision and recall strike a balance between 
performance and accuracy, while the F-measure amalgamates 
both. MFR and MAR concentrate more on the efficiency and 
degree of improvement in inspecting code statements. When 
determining performance, choosing the appropriate metric 
relies on specific objectives and research contexts to ensure 
that the evaluation aligns with the desired outcomes. Each 
metric emphasizes different facets of fault localization 
methods, hence their selection should be context-dependent to 
comprehensively assess the performance and potential 
enhancements of fault localization methods. 

3.2. Software Fault Localization Tools 

One challenge faced by many empirical studies in software 
fault localization is the need for appropriate tools to support 
automatic or semi-automatic data collection and suspicion 
calculation. Table 2 provides a list of commonly used tools, 
including their names, brief descriptions and which papers 
have used these tools. All these seven tools can be obtained by 
contacting their authors.

 
Table 2. Summary of tools used in the fault localization studies 

Name Brief Description Paper Using The Tool 

NP-CNN Convolutional Neural Networks blend natural language and source code data to pinpoint 
potential error sources in software bug reports automatically. 

[37] 

DNNLOC Employing Deep Neural Networks and Information Retrieval methods to facilitate the 
automatic identification of potential error sources in software bug reports. 

[42] 

DeepLocator 
Leveraging deep learning models with semantic insights to boost the precision of 
automatically linking error source code with software bug reports, expediting the bug 
resolution process. 

[44] 

CAST Utilizing deep learning and bespoke Abstract Syntax Trees to amalgamate semantic details 
from bug reports and source code, pinpointing potential error sources automatically. 

[50] 

HyLoc Autoencoders and vector space models are applied to discern potential bug files linked to 
specific bug reports. 

[40] 

DeepLOC Word embeddings represent semantically informative words in error reports and source files, 
with various CNNs employed to explore their features 

[15] 

BugFix Tools for program debugging powered by machine learning techniques. [51] 

� NP-CNN: A novel Convolutional Neural Network, NP-
CNN, utilizes lexical and program structure information 
to learn unified features from the natural language and 
source code of programming languages, thereby 
automatically locating potential bug source code based 
on bug reports. 

� DNNLOC: DNNLOC is a novel approach that combines 
Deep Neural Networks (DNN) with rVSM (an 
Information Retrieval (IR) technique). rVSM gathers 
text similarity features between bug reports and source 
files. DNN is used to learn connections between terms 
in error reports and potentially varying code tokens and 
terms in source files. 

� DeepLocator: DeepLocator consists of an enhanced 
CNN (Convolutional Neural Network) proposed in the 

study that considers bug-fixing experience, a new rTF-
IDuF method, and pre-trained word2vec technology. It 
enhances bug location performance by fully utilizing 
semantic information. 

� CAST: CAST utilizes deep learning and custom 
program Abstract Syntax Trees (AST) for the automatic 
and effective localization of potential bug source files. 
Specifically, CAST extracts lexical semantics from bug 
reports (e.g., words) and source files (e.g., method 
names) as well as program semantics (e.g., AST) from 
source files. Furthermore, CAST uses a customized AST 
to enhance the Tree-based Convolutional Neural 
Network (TBCNN) model, which differentiates between 
user-defined methods and system-provided methods to 
reflect their contributions to defects. Additionally, the 
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custom AST groups syntactic entities with similar 
semantics and trims those with less or redundant 
semantics to improve learning performance. 

� HyLoc: HyLoc is a novel approach that integrates Deep 
Neural Networks (DNN) with Information Retrieval 
(IR) technique rVSM. rVSM gathers textual similarity 
features between bug reports and source files. DNN is 
employed to learn associations between terms in error 
reports with different code tokens and terminologies in 
source files and documents, based on their frequency of 
occurrence in the reports and error files. HyLoc, 
combining functionalities built on DNN, rVSM, and 
project error repair history, achieves higher accuracy 
than state-of-the-art IR and machine learning 
techniques. 

� DeepLOC: DeepLoc is built around an advanced 
Convolutional Neural Network that accounts for the 
timeliness and frequency of bug fixes, complemented by 
word embedding and feature detection techniques. It 
uses word embeddings for capturing the semantics of 
words in bug reports and source files and leverages 
different CNNs for feature extraction. 

� BugFix: BugFix integrates machine learning concepts, 
enabling it to automatically learn from new debugging 
scenarios and bug fixes over time. This allows for more 
effective prediction of the most relevant bug fix 
suggestions for newly encountered debugging scenarios. 
The tool takes into account the static structure of 
statements, dynamic values used in successful and failed 
runs in those statements, and interesting value mapping 
pairs related to the statements. 

3.3. Dataset 

� Defects4J: Defects4J [52] is a widely used dataset for 
software defect research, comprising a series of real Java 
projects, each with multiple versions, some of which 
contain known defects. The uniqueness of this dataset 
lies in providing verifiable and reproducible real-world 
program defects, enabling researchers to assess the 
performance and accuracy of fault localization methods. 
Yiling Lou conducted an evaluation of Grace using both 
Defects4J (V1.2.0) and Defects4J (V2.0.0). 

� Eclipse Platform UI: A graphical user interface 
provided by the Eclipse development platform, 
designed for software development purposes. 

� AspectJ: A specialized extension for the Java 
programming language, introducing aspect-oriented 
programming capabilities. 

� JDT: An integrated collection of Java development 
tools specifically designed for the Eclipse platform. 

� Tomcat: A widely-used open-source Servlet container 
that facilitates the deployment and running of Java 
Servlet and JSP technologies. 

� Birt: An open-source solution for generating and 
publishing reports, offering capabilities for building and 
customizing reports via the Eclipse platform. 

� SWT: A comprehensive open-source widget toolkit 
designed for Java applications. 

Table 3 offers an inventory of Datasets and Papers that utilize 
these datasets. It comprises the names of the datasets, brief 
descriptions of each dataset, and information on which papers 
have utilized these datasets. 

Table 3. Dataset 
Dataset Brief Description Paper using the dataset 

Defects4J 
a software testing dataset designed for software defect research, comprising multiple 
projects with known bugs and corresponding test cases. 

[17,20,22,23,32,53,54,55,56,57,58] 

Eclipse UI 
a user interface of a development 
platform for Eclipse 

[40,42,44] 

JDT a suite of Java development tools for Eclipse [40,42,44,59] 

SWT an open source widget toolkit for Java. [40,42,44] 

Tomcat An open-source Servlet container used for running Java Servlets and JSP technologies [40,42,44,60,61,62] 

AspectJ 
an aspect-oriented programming extension for 
Java programming language 

[40,42,44,63,64,65,66,67] 

Birt 
An open-source reporting tool for creating and deploying reports, supporting construction 
and customization through the Eclipse IDE. 

[51,68] 

4. THREATS TO VALIDITY 

During our comprehensive review study, we identified 
potential factors that could undermine the reliability and 
applicability of our research findings. Initially, the process of 
selecting literature and gathering data could exhibit some 

selection bias, potentially impacting the breadth and integrity 
of our analysis. We endeavored to include a diverse array of 
sources and studies comprehensively, but there remains a 
possibility that certain critical research works were 
inadvertently omitted. 
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Moreover, the reliability and accuracy of certain publications 
could fluctuate, necessitating careful consideration of how 
these variations might influence our findings. Additionally, 
the methodologies and techniques employed in our study 
might introduce specific constraints or limitations. Certain 
approaches might be limited in scope, failing to encapsulate 
every facet of the fault localization field comprehensively. 
Furthermore, the currency and representativeness of the data 
might impact the extent to which our results can be 
generalized, particularly in rapidly advancing technological 
areas. Additionally, the personal perspectives and biases of 
our research team could have influenced the selection and 
interpretation of the literature. Despite our efforts to remain 
objective and impartial, it's important to acknowledge that 
personal biases may still subtly influence the research process. 
In an attempt to minimize these potential threats, we adopted 
a multi-faceted approach, drawing from various sources and 
perspectives, and aimed for a comprehensive coverage of 
diverse research findings. Concurrently, we made concerted 
efforts to interpret and cite literature objectively and 
impartially while verifying the accuracy of our data. 
Nevertheless, it is still necessary to be mindful of the potential 
impact these threats could have on the interpretation and 
generalizability of the research results. 

5. CONCLUSION 

This article reviews both traditional and learning-based 
emerging methods in the field of software fault localization. 
Through in-depth discussions of supervised, unsupervised, 
semi-supervised, reinforcement, and transfer learning 
methods, we demonstrate the advantages, limitations, and 
applicable scenarios of each method in software fault 
localization. After detailed discussions of key issues, research 
domains, evaluation metrics, and datasets, we examined the 
threats that could impact the reliability and effectiveness of 
the research. Overall, despite certain limitations in the 
research, it offers new insights and directions for future 
research in software fault localization, and encourages further 
exploration and innovation to advance the field. 
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