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Abstract—Solar energy has emerged as a cornerstone in the

quest for renewable energy sources, with its low carbon

footprint and abundant availability propelling its adoption.

The proliferation of solar power generation devices across the

globe is a testament to the commitment to a sustainable energy

future. These devices, however, are subject to a myriad of

challenges that can impair their operation. Environmental fac-

tors such as extreme weather, dust accumulation, and shading,

along with human-induced damages or technical malfunctions,

can precipitate faults that degrade the performance of solar

arrays and, by extension, the robustness of the power grid they

support. The intermittent nature of solar power already poses a

challenge to grid stability; device failures exacerbate this issue,

potentially leading to fluctuations in power supply and even

outages. To mitigate these risks and enhance the reliability

of solar power systems, we have introduced a sophisticated

hierarchical failure detection strategy grounded in Support

Vector Machine (SVM) algorithms. This innovative approach

organizes solar power devices into clusters, optimizing the

monitoring process. At the helm of each cluster, a dedicated

failure detector scrutinizes operational data transmitted by

the devices, employing SVM classification to discern the

functional status of each unit. We have subjected our hierar-

chical SVM-based failure detection method to rigorous testing

within a controlled simulation environment. The empirical

evaluation of our system reveals a marked improvement in

detecting device anomalies, as evidenced by substantial gains

in Detection Accuracy (DA) and a reduction in the False

Positive Rate (FPR). These advancements signify not only a

stride forward in fault diagnosis in solar power networks but

also a step toward ensuring the continuous, reliable delivery

of clean energy. Our method promises to bolster the resilience

of solar power infrastructure, thereby supporting the broader

integration of renewable energy sources into the modern

electrical grid.

Keywords–failure detection; solar power generation device;
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1. INTRODUCTION

To tackle the increasing depletion of petrochemical energy,

solar energy [1], [2], [3] has become a vigorously developed

renewable energy source globally. Solar energy is an ideal

renewable green energy [4], and solar power generation is a

crucial way to address the growing scarcity of petrochemical

energy and reduce environmental pollution. Solar power (as

shown in Figure 1) generation not only has the advantages

of being environmentally friendly and renewable but also is

not restricted by geographical location, can be used on-site, is

easy to store, allows for flexible design in terms of scale, and

is convenient to integrate with buildings [5], [6].

It has witnessed substantial advancements, with a notable

global trend towards increased efficiency and cost reduction

in photovoltaic (PV) technology. High-end solar panels have

achieved conversion efficiencies exceeding 22%, thanks to on-

going research into multi-junction cells and perovskite materi-

als. Concurrently, the cost of solar installations has decreased

significantly, enhancing competitiveness with fossil fuels. This

is attributed to economies of scale, improved technologies, and

optimized supply chains. Energy storage systems, particularly

batteries, are increasingly being coupled with solar panels to

manage the intermittency of solar power, ensuring a more sta-

ble energy supply. Additionally, to circumvent land constraints,

floating solar farms are gaining popularity, providing the dual

benefits of energy generation and water conservation. In China,

the world’s leader in solar PV production and deployment, the

pace of solar farm construction continues unabated, especially

in desert regions. Chinese firms are pouring resources into

R&D to further enhance solar technology, with the government

scaling back subsidies to foster a more market-driven industry.

Solar projects increasingly incorporate large-scale battery sys-

tems to provide consistent power output. Moreover, solar en-

ergy is central to China’s rural electrification efforts, ensuring

clean energy access to off-grid communities. As a global solar

market player, China’s influence extends beyond its borders

through the export of solar technology and expertise.

However, utilizing solar energy to provide stable, continuous

electrical energy output still presents some challenges. For

instance, widely distributed solar power generation devices

are prone to faults due to various natural and human-induced

factors, posing a challenge to power supply safety. Fault

detection methods are essential to address the issue of power

supply safety caused by faults in power generation devices [7],

[8]. They can timely and accurately identify faulty power

generation devices for prompt maintenance and updates, en-

suring the stability and continuous power output of the entire
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Figure 1. Solar power model

power generation network. Currently, there are several meth-

ods applied in the fault detection of power grid equipment.

For example, in [9], an expert system method is employed

to detect faults in circuit breakers. This approach establishes

an expert knowledge base by describing the experiential rules

of maintenance personnel and compares the established rules

with monitoring data, completing the fault diagnosis. In [10],

an artificial immune network classification algorithm is used

for transformer fault diagnosis. The algorithm utilizes infor-

mation from antigen and memory antibody categories in the

immune network, constructs the learning of fault samples

through the construction of the artificial immune network,

obtains the memory antibody set of fault sample features, and

performs classification through the nearest neighbor method

to achieve transformer fault diagnosis. In [11], a Petri net

model is established for transmission lines and bus-bars, and

the Petri net model can locate faults when they occur. These

fault detection methods typically require the establishment of

complex fault detection models and a large amount of data

for model training. This requires more computational, storage,

and network performance for the entire distributed solar power

generation network, and the accuracy and time of detection are

also affected by multiple parameters.

In this paper, we propose a fault detection method based on

SVM model. SVM classification, as a binary classification

method, can handle both linear and nonlinear data. Moreover,

SVM classification models [12] are characterized by their

simplicity and the absence of a need for extensive data to

train the model. Therefore, SVM classification is suitable

for processing linear data output by distributed solar power

generation devices, thereby achieving fault detection of solar

power generation devices. Through simulation experiments,

we demonstrate that our proposed method can quickly identify

faulty solar power generation devices and ensure the accuracy

of fault detection. The innovations of this paper mainly include

the following aspects:

• We propose a fault detection method based on SVM for

solar power generation devices, which can achieve timely

and accurate fault detection to meet the requirements of

power supply safety.

• By adopting a hierarchical detection architecture, we can

promptly process equipment operating data locally, provid-

ing assurance for timely subsequent recovery measures after

the occurrence of faults in power generation devices.

• Through the establishment of a simulation experiment plat-

form, we verify the detection speed and accuracy of our

proposed fault detection method.

The remainder of this paper is organized as follows: Section 2

introduces the system model; Section 3 describes the imple-

mentation of the fault detection method; Section 4 validates the

performance of our proposed fault detection method through

experiments; Section 5 concludes the paper.

2. SYSTEM MODEL

We assume that the distributed power grid consists of N solar

power generation devices. Solar power generation devices

(equivalent to nodes in this paper) are randomly distributed in

an A∗B square meter area. Each node has a unique identifier,

and if a node fails and exits the network, rejoining the network

will result in the reassignment of an identifier. Each node

has a monitoring module to monitor the operational status of

the node, including temperature, humidity, GPS information,

pressure, and other information. In addition, nodes also have

a transmission module that allows them to send or receive

node monitoring data with neighboring nodes. By relying on

multiple routes through neighboring nodes, node monitoring

data can eventually be uploaded to the cloud. Since nodes have

power generation capabilities, it is assumed that nodes are not

subject to energy limitations.

We assume that the communication links between any two

nodes are unreliable communication links, and the communi-

cation links between them belong to fair-lossy links [13]. This

means that no message can be copied or modified between

them, and new messages cannot be created. If a normal node

p continuously sends a message m to a normal node q, node
q will eventually receive message m.

We assume the existence of some local-global time (not known

to every node), referred to as global stable time. Under this

assumption, nodes function normally in sending, receiving,

and processing data. In addition, the steps of continuous data

processing by nodes require a time greater than 0.

3. IMPLEMENTATION OF FAILURE DETECTION METHOD

3.1 Node Clustering

In the network assumed in this paper, nodes are randomly

distributed, but the GPS information of each node is known.

Based on this, we consider using the LEACH algorithm [14]

for node clustering in the network. In the LEACH algorithm,

each node has an opportunity to be elected as a cluster head

and randomly generates a random number between 0 and 1.
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If this random number is less than the threshold P , the node

is selected as the cluster head. The calculation formula for

threshold P is:

Pi(t) =

{
k

N−k·(r mod N
k )
, Ci(t) = 1

0, Ci(t) = 0
(1)

PCH(i, r) =

{
1, R(i) < Pi(t)
0, otherwise

(2)

Where r represents the number of election rounds, k represents

the number of cluster heads elected, N represents the total

number of nodes in the network, Ci(t) = 0 represents

that node i has already been elected as a cluster head, and

Ci(t) = 1 represents that node i has not been elected as a

cluster head, i.e., only nodes that have not been cluster heads

in previous rounds can become cluster heads in the current

round. In Equation 2, R(i) is a random number between 0 and

1, PCH(i, r) representing the probability that node i becomes

a cluster head in round r.
The improvement plan of this LEACH algorithm mainly

considers node processing capability and neighbor density. By

adding a cost function Ctotal for each node when selecting

cluster heads, this function can be expressed as:

Ctotal = Ccpu + Cdensity + Cdistance (3)

Where Ccpu represents the node processing capability and can

be calculated using the following formula:

Ccpu =
ICtotal

CPI × IC × 1/fCPU
(4)

Where ICtotal represents the total number of executed in-

structions, CPI represents the average number of clock cycles

required to execute each instruction, IC represents the number

of times the instruction is executed, and fCPU represents the

clock frequency. Cdensity represents the node density and can

be calculated using the following formula:

Cdensity = {neighbor(i)|dij < d0, i �= j} (5)

Where dij represents the distance between node i and node

j, and d0 represents the threshold measuring the distance

between nodes.

In the traditional LEACH algorithm, a new set of cluster heads

needs to be selected in each round. This frequent selection

of cluster heads can lead to a significant increase in com-

munication overhead and may result in network congestion.

Therefore, in this improvement plan, cluster heads are selected

only when a cluster head fails, to minimize the frequency of

cluster head selection. The process of clustering of our method

is shown in Algorithm 1. For all the nodes, they can be selected

as the cluster head if Ci(t) = 1. Through the comparison

between R(i) and PCH(i, r), the node can be selected as the

cluster head eventually. For the non-cluster head nodes, they

need compute the distance between themself and cluster head.

Finally, these nodes can find the nearest cluster head as their

cluster head and join the cluster.

Algorithm 1 Cluster Head Election Algorithm

1: Input: N , k, r
2: Output: Pch(i, r) = 1 or Pch(i, r) = 0

3: for all nodes do
4: Compute Pch(i, r)
5: if Ci(t) = 0 then Abandoning cluster head elections

6: else if Ci(t) = 1 then
7: Select a value R(i) randomly

8: Compare R(i) and Pch(i, r)
9: if R(i) < Pch(i, r) then

10: Node i becomes the cluster head

11: end if
12: end if
13: end for

14: for each non-cluster head node do
15: for all l > 0 do
16: Select CHl
17: Compute the distance between oneself and CHl
18: Join the nearest cluster

19: end for
20: end for

3.2 SVM Model

Vapnik [15] proposed a region separation algorithm, called

SVM. The main purpose of SVM is to find the optimal hyper-

plane that divides the data into two classes. In this technique,

its principle is to define a decision function f : X → {−1, 1},
while having a normal set of data {(xi, yi);xi ∈ Xandyi ∈
(−1, 1)} and x ∈ X . For each new point x ∈ X , we can

use the decision function to estimate whether it belongs to the

right class ((−1)or(+1)) . To minimize the structural risk, this

decision can be made by relying on empirical risk.

It is supposed that there are the following empirical data

(x1, y1) . . . (xi, yi) . . . (xm, ym) ∈ R × {±1} . In the case

of linear classification, a hyperplane, which is computed by

the SVM algorithm, separates at best the samples of two

classes. In that case, the function f is linear in xi with

the following general form: f(xi =< ω, xi >) + b [30].

As shown in Figure 2, these data can be separated by an

infinity of hyperplanes. However, the middle hyperplane of

them is optimal. The limiting condition of this hyperplane is

as follows:

yi(ωxi + b) ≥ 1fori = 1 · · ·m (6)

The optimization problem is described in the following way:

minx∈Xf(x) under constraint gi(x) ≤ 0 . The Lagrangian

method is used to resolve this problem. So, the dual problem

becomes:{ ∑L
i αi − 1

2

∑L
i,j αiαjyiyj < xi, xj >∑L
i αiyi = 0

(7)

where αi are lagrangian parameters ( αi �= 0 for
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Figure 2. Linear separation

yi(< ω, xi > +b) = 1 and αi = 0 for yi(< ω, xi > +b) > 1
).

So, the weight hyperplane vector ω =
∑L
i=1 αiyixi and the

offset b = 1− < ω, xi > can be obtained, where xi is the

support vector of the known class (here its class is 1), and we

obtain the hyperplane function.

f(x) =< ω, x > +b =
∑
i∈SV

αiyi < xi, x > +b (8)

For the nonlinear classification, it is not useful to the separator

hyperplane of linear classification. Thus, it is useful in this

case by employing nonlinear SVM. The principle of nonlinear

SVM is to find a space with the biggest dimension where

the projection of examples is linearly separable (as shown in

Figure 3), which is a Hilbert space H based on a scalar product

that can be replaced by a kernel function of the starting space

(space of observations).

We suppose:

∅ : RP → H;x 	→ ∅(xi) (9)

here a kernel function K(xi, xj) is used to replace the scalar

product < φ(xi), φ(xj) >, so the problem of optimization is

translated into

⎧⎨
⎩

maxαi
∑L
αi
αi − 1

2

∑L
i,j αiαjyiyjK(xi, xj)∑L

i αiyi = 0
c ≥ αi ≥ 0

(10)

where C is the tolerance constant. We can obtain the decision

function:

f(x) =< ω, x > +b =
∑
i∈SV

αiyiK(< xi, x >) + b (11)

We use the following Gaussian kernel function for classifica-

tion.

Figure 3. Non-linear separation

K(x|x′) = exp(−‖x− x′‖
2σ2

) (12)

3.3 Node Failure Detection

To monitor the status of nodes in the assumed network

described in this paper, we propose a hierarchical failure

detection method, as illustrated in Figure 4. In this detection

method, the system is divided into three layers: the bottom

layer consists of regular nodes, followed by the cluster head

node layer, and finally, the top layer is the cloud service

layer. In each cluster, regular nodes send operational status

information (such as voltage, current, temperature, humidity,

etc.) to the cluster head node. The SVM classifier located at

the cluster head categorizes this information to determine the

operational status of the node. Simultaneously, the operational

status information from the cluster head node is uploaded to

the cloud service center via the base station. The SVM clas-

sifier at the cloud service center categorizes this information

to determine the operational status of the cluster head node.

According to the above analysis, we propose a node failure de-

tection algorithm, as shown in Algorithm 2. In this algorithm,

regular nodes periodically send operational status messages

to the cluster head node, with a time interval set as Δt.
For the cluster head node, it has two main functions. First,

it receives operational status messages from regular nodes,

extracts the information, and classifies the nodes using its

deployed SVM classifier. If it detects a node failure, it sends

the information of the failed node to the cloud service center.

Second, it periodically sends operational status messages to

the cloud service center, with a time interval also set as

δ. For the cloud service center, upon receiving operational

status messages from the cluster head node, it extracts the

information and classifies the cluster head node using its

deployed SVM classifier. If it detects a failure in the cluster

head node, it initiates the next round of cluster head node

selection and re-clustering of nodes.

4. EXPERIMENTS

In this section, to verify the effectiveness of the proposed fail-

ure detection method, we used MATLAB to build a simulation

platform and compared it with other failure detection methods.

In the experiment, we assumed a total of 200 nodes randomly
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Figure 4. Hierarchical failure detection method

Figure 5. Network with 200 nodes

distributed in a 10∗10KM area, with the base station located

at the center of the region, as shown in Figure 5.

For evaluating the performance of the failure detection meth-

ods, we used accuracy metrics. In the comparative experiment,

we chose a Bayesian-based failure detection method as a

benchmark, evaluating our proposed failure detection method

and the Bayesian-based method using two accuracy metrics.

The first metric is Detection Accuracy (DA), calculated as

follows:

DA =
Numberoffaultynodedetected

Totalnumberoffaultynode
(13)

Algorithm 2 Node Failure Detection Algorithm

1: Input: information from node or cluster head, Δt
2: Output: node → normal; node → failure; cluster head →

normal; cluster head → failure

3: for node at time t do
4: Send information to cluster head

5: end for

6: for cluster head do
Task 1:

7: if receiving the information from node then
8: Extract the information

9: Classify node → normal or node → failure

10: Send alarm information to Cloud if node → failure

11: end if
Task 2:

12: for all nodes at time t do
13: Send information to Cloud

14: end for
15: end for

16: for Cloud do
17: if receiving the information from cluster head then
18: Extract the information

19: Classify cluster head → normal or cluster head →
failure

20: Reselect the cluster head if cluster head → failure

21: end if
22: end for

The second metric is False Positive Rate (FPR), calculated as

follows:

FPR =
Numberofnon− faultynodedetectedasfaulty

Totalfaultfreenodes
(14)

To simulate node failures and evaluate the performance of

our proposed failure detection method and the Bayesian-based

method, we conducted comparative experiments using fault

injection. In the comparative experiment, we set the node

failure rate to range from 0.05 to 0.4.

Since the proposed method uses an improved LEACH method

to cluster nodes, the size of each cluster has a noticeable

impact on the accuracy of failure detection, as shown in

Figures 6 and 7. From Figures 6 and 7, it can be observed

that as the number of nodes in each cluster increases, both

methods show an increasing trend in DA and a decreasing

trend in FPR. The reason for this phenomenon might be that

with the increase in data uploaded by nodes, the SVM model

and Bayes model can be better trained, enhancing the accuracy

of the models and consequently improving the accuracy of

failure detection. However, it can also be seen from the figures

that our proposed method has better accuracy, possibly because

the SVM classifier can handle linear data more effectively.
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Figure 6. DA vs. number of nodes

Figure 7. FPR vs. number of nodes

In addition to being influenced by the number of nodes in

each cluster, the accuracy of the failure detection method

is also affected by the real failure probability of nodes. By

injecting faults, we achieved different failure rates for nodes

to validate the performance of our proposed failure detection

method and other methods. As shown in Figures 8 and 9, as

the node failure probability increases, both methods show a

decreasing trend in DA and an increasing trend in FPR. This

may be due to the increase in node failure rate, which affects

the classification of both failure detection methods, leading to

the incorrect identification of some failed nodes. However, our

proposed method demonstrates better DA and FPR as the node

failure probability increases. This may be because the SVM

model can accurately identify nodes that have failed with fewer

data.

5. CONCLUSION

The failure detection method is one of the basic components

for maintaining the high availability of a system. In this

paper, we proposed an important hierarchical failure detec-

tion method based on SVM classifiers. This method clusters

nodes in the system and then deploys failure detectors at

the cluster head nodes and the cloud, thus identifying failed

nodes. Additionally, this paper verified the performance of the

proposed failure detection method and other failure detection

Figure 8. DA vs. failure rate

Figure 9. FPR vs. failure rate

methods through building a simulation environment. Based

on the experimental results, our proposed failure detection

method outperforms other failure detection methods in terms

of DA and FPR, making it more suitable for failure detection

in distributed solar power generation devices.
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